Designing van der Waals Forces between Nanocolloids.

Nano Lett

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16803, USA.

Published: January 2005

van der Waals (VDW) dispersion forces are often calculated between colloidal particles by combining the Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) theory with the Derjaguin approximation; however, several limitations prevent using this method for nanocolloids. Here we use the Axilrod-Teller-Muto 3-body formulation to predict VDW forces between spherical, cubic, and core-shell nanoparticles in a vacuum. Results suggest heuristics for "designing" nanocolloids to have improved stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl048265pDOI Listing

Publication Analysis

Top Keywords

van der
8
der waals
8
designing van
4
waals forces
4
forces nanocolloids
4
nanocolloids van
4
waals vdw
4
vdw dispersion
4
dispersion forces
4
forces calculated
4

Similar Publications

Article Synopsis
  • The study investigates the use of intravascular lithotripsy (IVL) in treating heavily calcified chronic total occlusions (CTOs), noting that calcification leads to worse patient outcomes.
  • It analyzes data from 404 patients, finding that procedural success rates and safety outcomes were similar for both CTO and non-CTO patients.
  • The conclusion emphasizes that IVL is effective and safe for managing heavily calcified lesions, supporting its use in clinical practice.
View Article and Find Full Text PDF
Article Synopsis
  • Multi-b-value diffusion-weighted MRI techniques can measure brain tissue properties but face challenges due to SNR and the selection of b-values for accurate data gathering.
  • This study uses a genetic algorithm to determine the most effective b-values for estimating interstitial fluid in the brain, comparing its performance to other sampling methods.
  • Results showed that the optimized b-value scheme significantly reduced the root mean square error (RMSE), improving the accuracy of the diffusion component estimation related to interstitial fluid.
View Article and Find Full Text PDF

Objectives: A minimally invasive lobectomy (MIL) is the standard treatment for stage I non-small cell lung cancer (NSCLC) in medically operable patients. Stereotactic ablative radiotherapy (SABR) is recommended for inoperable patients and has been proposed as a potential alternative for operable patients as well. Here, we present the results of a feasibility study in preparation for a nationwide retrospective cohort study, comparing outcomes between both treatment modalities.

View Article and Find Full Text PDF

Diagnostic accuracy of Ara h 2 for detecting peanut allergy in children.

Clin Exp Allergy

August 2021

Department of Dermatology/Allergology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.

Article Synopsis
  • The study evaluated the effectiveness of a specific IgE test for diagnosing peanut allergies in children, aiming to reduce reliance on more invasive food challenge tests.
  • It involved 150 children aged 3.5 to 18 in the Netherlands, comparing results from the IgE test with actual peanut ingestion to determine allergy status.
  • The findings showed high diagnostic accuracy for the IgE test, identifying patients as peanut-tolerant or allergic, and potentially saving healthcare costs by using this method instead of national guidelines.
View Article and Find Full Text PDF

Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown.

Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!