Background: Antibiotic resistance is increasingly complicating the management of urinary tract infection. We investigated the extent to which a group of Escherichia coli called clonal group A (CGA), which is associated with resistance to trimethoprim-sulfamethoxazole (TMP-SMZ), accounted for TMP-SMZ resistance among a prospectively collected set of uropathogenic and rectal E. coli isolates from a university population in Michigan.

Methods: Resistant and susceptible uropathogenic E. coli isolates (45 each) and 79 randomly selected rectal E. coli isolates were evaluated for CGA status by use of 2 definitions of this group-- the enterobacterial repetitive intergenic consensus sequence 2 (ERIC2)-polymerase chain reaction (PCR) pattern A fingerprint and the C288T single nucleotide polymorphism (SNP) in the fumC gene. We compared virulence gene profiles and molecular mechanisms of resistance to TMP-SMZ between isolates classified as CGA by both approaches to better characterize the relationship between isolates.

Results: Of the 45 isolates that exhibited ERIC2-PCR pattern A, one-half (23 of 45) were resistant to TMP-SMZ, and 16 contained the C288T SNP. The pattern A isolates were diverse, exhibiting multiple mechanisms of resistance to TMP-SMZ and various combinations of virulence factors. C288T SNP isolates showed less variation, with 15 of 16 resistant to TMP-SMZ and a 1.8-kb class I integron bearing the dfrA17 gene present in 14 of 15 resistant isolates. Twelve of 16 exhibited the same combination of virulence genes. Pulsed-field gel electrophoresis patterns for these 12 isolates were unique.

Conclusion: CGA, as defined by the fumC C288T SNP, appears to be distantly clonal but is not an outbreak-related group. The widespread group has likely evolved through lateral transfer of genes conferring virulence and antibiotic resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1086/428727DOI Listing

Publication Analysis

Top Keywords

coli isolates
12
c288t snp
12
isolates
9
resistance trimethoprim-sulfamethoxazole
8
escherichia coli
8
antibiotic resistance
8
rectal coli
8
mechanisms resistance
8
resistance tmp-smz
8
resistant tmp-smz
8

Similar Publications

Background: In developing countries, the co-existence of a high burden of infectious diseases caused by Gram-negative bacteria and the rapid increase and spread of multidrug-resistant bacteria have become a serious health threat.

Objective: Profiling of Gram-negative bacteria and determining the magnitude of their antimicrobial resistance among patients.

Results: A total of 175 non-spore-forming Gram-negative bacteria were isolated from 873 different clinical samples.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) remains a significant health challenge globally and nations have the responsibility to maintain a constant surveillance of AMR, particularly for the emergence of multidrug-resistant (MDR) isolates to existing antibiotics. Against this backdrop, we applied the WHO's AWaRe (ACCESS, WATCH, and RESERVE) antibiotics classification and the European Centre for Disease Prevention and Control (ECDC)'s multidrug resistance definition for AMR isolates from clinical specimens.

Method: This study reviewed bacterial culture and antibiotic sensitivity test outcomes.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Objectives: To evaluate the antimicrobial susceptibilities of Gram-positive and Gram-negative isolates from patients in Jordan between 2010 and 2021, through the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme.

Methods: Medical centres in Jordan collected bacterial isolates from hospitalised patients with defined infection sources between 2010 and 2021 (no isolates collected in 2014). Antimicrobial susceptibility was interpreted using CLSI standards.

View Article and Find Full Text PDF

Background: Clinicians need to prescribe antibiotics in a way that adequately treats infections, while simultaneously limiting the development of antibiotic resistance (ABR). Although there are abundant guidelines on how to best treat infections, there is less understanding of how treatment durations and antibiotic types influence the development of ABR. This study adopts a self-controlled case study (SCCS) method to relate antibiotic exposure time to subsequent changes in resistance patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!