Implantable cardioverter defibrillator studies have established the superiority of biphasic waveforms over monophasic waveforms. However, external defibrillator studies of biphasic waveforms are not as widespread. Our objective was to compare the defibrillation efficacy of clinically used biphasic waveforms, i.e., truncated exponential, rectilinear, and quasi-sinusoidal (Gurvich) waveforms in a fibrillating heart model. Langendorff-perfused rabbit hearts (n = 10) were stained with a voltage-sensitive fluorescent dye, Di-4-ANEPPS. Transmembrane action potentials were optically mapped from the anterior epicardium. We found that the Gurvich waveform was significantly superior (p < 0.05) to the rectilinear and truncated exponential waveforms. The defibrillation thresholds (mean +/- SE) were as follows: Gurvich, 0.25 +/- 0.01 J; rectilinear-1, 0.34 +/- 0.01 J; rectilinear-2, 0.33 +/- 0.01 J; and truncated exponential, 0.32 +/- 0.02 J. Using optically recorded transmembrane responses, we determined the shock-response transfer function, which allowed us to predict the cellular response to waveforms at high accuracy. The passive parallel resistor-capacitor model (RC-model) predicted polarization superiority of the Gurvich waveform in the myocardium with a membrane time constant (taum) of less than 2 ms. The finding of a lower defibrillation threshold with the Gurvich waveform in an in vitro model of external defibrillation suggests that the Gurvich waveform may be important for future external defibrillator designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/y04-131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!