Background: Amnesia for aversive events caused by benzodiazepines or propofol depends on the basolateral amygdala (BLA). Whether the amnesia of volatile anesthesia is also mediated through the BLA is unknown. If so, a general principle of anesthetic-induced amnesia may be emerging. Here, using an inhibitory avoidance paradigm, the authors determine whether BLA lesions prevent sevoflurane-induced amnesia.
Methods: Male Sprague-Dawley rats were separated into two groups: sham-operated controls (n = 22) and rats given bilateral N-methyl-D-aspartate lesions of the BLA (n = 32). After a 1-week recovery, the rats were randomly assigned to be trained during either air or sevoflurane (0.3% inspired, 0.14 minimum alveolar concentration) exposure. Animals learned to remain in the starting safe compartment of a step-through inhibitory avoidance apparatus for 100 consecutive seconds by administering foot shock (0.3 mA) whenever they entered an adjacent shock compartment. Memory was assessed at 24 h. Longer latencies to enter the shock compartment at 24 h imply better memory.
Results: Sham-air (n = 10) animals had a robust memory, with a median retention latency of 507 s (interquartile range, 270-600 s). Sham-sevoflurane (n = 6) animals were amnesic, with a latency of 52 s (27-120 s) (P < 0.01, vs. sham-air). Both the air-exposed (n = 5) and the sevoflurane-exposed (n = 8) animals with BLA lesions showed robust memory, with latencies of 350 s (300-590 s) and 378 s (363-488 s), respectively. The latencies for both did not differ from the performance of the sham-air group and were significantly greater than the latency of the sham-sevoflurane group (both P < 0.01).
Conclusions: BLA lesions block sevoflurane-induced amnesia. A role for the BLA in mediating anesthetic-induced amnesia may be a general principle of anesthetic action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-200504000-00010 | DOI Listing |
J Environ Sci (China)
May 2025
College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China. Electronic address:
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB.
View Article and Find Full Text PDFBMC Surg
September 2024
Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden.
Background: We sought to analyze, in well-defined clinical setting, the first 100 patients treated at the intraoperative MRI (iMRI) hybrid surgical theatre at our facility in a population-based setting to evaluate which pathologies are best approached with iMRI assisted surgeries, as this is not yet clearly defined.
Methods: Patients undergoing surgery in the 3T iMRI hybrid surgical theatre at our neurosurgical department between December 2017 to May 2021 were included after informed consent. Demographic, clinical, surgical, histological, radiological and outcome parameters, as well as variables related to iMRI, were retrospectively collected and analyzed.
Front Microbiol
July 2024
Lab of Microbial Engineering (Infection and Immunity), School of Life and Health Sciences, Hainan University, Haikou, China.
Aim: To describe the histopathology and etiology of an outbreak of respiratory disease at a farm in Hainan, China.
Methods And Results: The etiology was confirmed by gross examination and microscopic analysis. The bacterial isolates from blood and internal organs were identified by biochemical analysis and 16S rRNA gene sequencing.
United European Gastroenterol J
October 2024
Department of Gastroenterology and Hepatology, St. Antonius Hospital, Nieuwegein, The Netherlands.
Psychopharmacology (Berl)
January 2025
Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
Serotonin signaling plays critical roles in social and emotional behaviors. Likewise, decades of research demonstrate that the amygdala is a prime modulator of social behavior. Permanent excitotoxic lesions and transient amygdala inactivation consistently increase social behaviors in non-human primates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!