Purpose: To investigate infiltrating cells, cytokines, and kinetics of cytokine expression during acute retinal necrosis (ARN) in the uninoculated eye after inoculation of herpes simplex virus (HSV)-1 into the anterior chamber of one eye of BALB/c mice.
Methods: At different time points after inoculation of 2 x 10(4) plaque-forming units (PFU) HSV-1 (KOS strain) or an equivalent volume of Vero cell extract in cell culture medium, the uninoculated eyes were enucleated. RT-PCRs for TNFalpha, IFNgamma, and IL-4 and immunohistochemical staining were performed to identify infiltrating cells and cytokines. Cytometric bead array was used to measure the levels of TNFalpha, IFNgamma, and IL-4 protein.
Results: CD4(+) T cells, F4/80(+) macrophages, Gr-1(+) polymorphonuclear cells (PMNs), and CD19(+) B cells were detected in the uninoculated eye of virus-infected mice. Furthermore, RPE65(+) retinal pigment epithelial (RPE) cells and activated Muller cells were also detected in the ARN lesion. TNFalpha, IFNgamma, and IL-4 mRNA and protein were upregulated during the evolution of ARN in HSV-1-infected contralateral eyes compared with levels in control subjects. Immunohistochemistry revealed that cytokines were produced by infiltrating cells as well as by resident retinal cells.
Conclusions: The results of these studies support the idea that T cells and cytokines are actively involved in HSV-1 retinitis. They also suggest that PMNs, B cells, and/or macrophages, as well as resident retinal cells, such as RPE and activated Muller cells, also play a role in the pathogenesis of HSV-1 retinitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.04-1284 | DOI Listing |
Neoplasia
January 2025
Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.
Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.
View Article and Find Full Text PDFCancer Treat Rev
January 2025
Gastrointestinal Unit, Department of Medicine, Royal Marsden Hospital, London and Surrey, UK. Electronic address:
Claudins (CLDNs) play a crucial and indispensable role as fundamental components within the structure of tight junctions. Due to the distinct and unique distribution pattern exhibited by CLDNs in both normal and malignant tissues, these proteins have garnered significant attention as pivotal targets for systemic anti-cancer therapy and as noteworthy diagnostic markers. This review provides a comprehensive and detailed elucidation of the fundamental understanding surrounding CLDNs, their intricate expression patterns, the potential role they play in cancer diagnosis and therapeutic potentials; all encapsulated within a succinct summary of the cutting-edge advancements and the information derived from various clinical trials.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:
A micro-nano sharkskin like film (Cu-MNS-FA) was synthesized on copper surface through chemical etching followed by formate passivation, and its anticorrosive, antibacterial and thermal conductivity properties were investigated. Results show that after 7 d of exposure to nature, Pseudomonas aeruginosa and Desulfovibrio vulgaris seawater, the charge transfer resistance of Cu-MNS-FA is more than three times higher than that of unmodified copper. In particular, in D.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.
View Article and Find Full Text PDFACS Nano
January 2025
Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!