Mesenchymal stem cells (MSCs) retain both self-renewal and multilineage differentiation capabilities. Despite wide therapeutic potential, many aspects of human MSCs, particularly the molecular parameters to define the stemness, remain largely unknown. Using high-density oligonucleotide micro-arrays, we obtained the differential gene expression profile between a fraction of mononuclear cells of human umbilical cord blood (UCB) and its MSC subpopulation. Of particular interest was a subset of 47 genes preferentially expressed at 50-fold or higher in MSCs, which could be regarded as a molecular foundation of human MSCs. This subset contains numerous genes encoding collagens, other extracellular matrix or related proteins, cytokines or growth factors, and cytoskeleton-associated proteins but very few genes for membrane and nuclear proteins. In addition, a direct comparison of this microarray-generated transcriptome with the published serial analysis of gene expression data suggests that a molecular context of UCB-derived MSCs is more or less similar to that of bone marrow-derived cells. Altogether, our results will provide a basis for studies on molecular mechanisms controlling core properties of human MSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.2004-0304 | DOI Listing |
J Dermatol Sci
December 2024
Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan. Electronic address:
Background: Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored.
Objective: This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs).
Methods: Splenocytes of Fli1 BcKO (Cd19-Cre; Fli1) and Cd19-Cre mice were analyzed flow cytometrically.
Exp Cell Res
January 2025
Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio-45267, United States of America; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India. Electronic address:
Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China. Electronic address:
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:
B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!