Ataxia-oculomotor apraxia syndrome 1 is an early onset cerebellar ataxia that results from loss of function mutations in the APTX gene, encoding Aprataxin, which contains three conserved domains. The forkhead-associated domain of Aprataxin mediates protein-protein interactions with molecules that respond to DNA damage, but the cellular phenotype of the disease does not appear to be consistent with a major loss in DNA damage responses. Disease-associated mutations in Aprataxin target a histidine triad domain that is similar to Hint, a universally conserved AMP-lysine hydrolase, or truncate the protein NH2-terminal to a zinc finger. With novel fluorigenic substrates, we demonstrate that Aprataxin possesses an active-site-dependent AMP-lysine and GMP-lysine hydrolase activity that depends additionally on the zinc finger for protein stability and on the forkhead associated domain for enzymatic activity. Alleles carrying any of eight recessive mutations associated with ataxia and oculomotor apraxia encode proteins with huge losses in protein stability and enzymatic activity, consistent with a null phenotype. The mild presentation allele, APTX-K197Q, associated with ataxia but not oculomotor apraxia, encodes a protein with a mild defect in stability and activity, while enzyme encoded by the atypical presentation allele, APTX-R199H, retained substantial function, consistent with altered and not loss of activity. The data suggest that the essential function of Aprataxin is reversal of nucleotidylylated protein modifications, that all three domains contribute to formation of a stable enzyme, and that the in vitro behavior of cloned APTX alleles can score disease-associated mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2556069 | PMC |
http://dx.doi.org/10.1074/jbc.M502889200 | DOI Listing |
To maintain genome stability, proliferating cells must enact a program of telomere maintenance. While most tumors maintain telomeres through the action of telomerase, a subset of tumors utilize a DNA-templated process termed Alternative Lengthening of Telomeres or ALT. ALT is associated with mutations in the ATRX/DAXX/H3.
View Article and Find Full Text PDFSTAT5B is a vital transcription factor for lymphocytes. Here, function of two STAT5B mutations from human T cell leukemias: one substituting tyrosine 665 with phenylalanine (STAT5B ), the other with histidine (STAT5B ) was interrogated. modeling predicted divergent energetic effects on homodimerization with a range of pathogenicity.
View Article and Find Full Text PDFLiver Int
February 2025
Sorbonne Université, Service Médecine Interne, Centre de référence des maladies autoinflammatoires et des amyloses (CEREMAIA), Assistance Publique des hôpitaux de Paris, Hôpital Tenon, Paris, France.
Background: Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease, associated with MEFV mutations. FMF patients can experience liver involvement, potentially leading to cirrhosis.
Objectives: This study aimed to evaluate liver involvement in FMF patients at a French tertiary centre for adult FMF.
Ann Indian Acad Neurol
January 2025
Department of Neurology, Lourdes Hospital, Kochi, Kerala, India.
Int J Biol Sci
January 2025
Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!