Dopaminergic innervation of forebrain by ventral mesencephalon in organotypic slice co-cultures: effects of GDNF.

Brain Res Mol Brain Res

Department of Neurology, S-526 Biomedical Science Tower, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

Published: March 2005

Numerous studies have verified the ability of glial cell line-derived neurotrophic factor (GDNF) to protect or rescue neurons in models of Parkinson's disease. However, the role of GDNF in the development of dopaminergic (DA) neurons remains unclear. We investigated the hypothesis that GDNF is a target protein for the DA neurons of the mesencephalon forming the nigrostriatal pathway in an in vitro rat model. Organotypic slice cultures were prepared from tissue isolated from postnatal rat pups including but not limited to the substantia nigra (SN), striatum, and cerebral cortex. These cultures were maintained for up to 100 days in vitro. In the absence of exogenous GDNF, DA neurons from the SN grew into the striatum but not the cerebral cortex or hippocampus as determined by immunostaining for tyrosine hydroxylase. The addition of exogenous GDNF increased the survival of DA neurons and also enhanced the number of dopaminergic processes innervating the striatum. GDNF also induced DA innervation of the cerebral cortex but not hippocampus. In conclusion, our studies indicate that the normal pattern of innervation by DA neurons of the mesencephalon can be recapitulated with organotypic co-cultures and that this pattern can be altered by GDNF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbrainres.2004.11.018DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
12
organotypic slice
8
gdnf
8
neurons mesencephalon
8
striatum cerebral
8
exogenous gdnf
8
cortex hippocampus
8
neurons
6
dopaminergic innervation
4
innervation forebrain
4

Similar Publications

Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics.

Front Biosci (Landmark Ed)

December 2024

Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA.

Background: Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common metabolism-related multisystem clinical disorder, often accompanied by a high comorbidity of mild cognitive impairment (MCI). Increasing evidence suggests that the amygdala is crucial in cognitive processing during metabolic dysfunction. Nevertheless, the role of the amygdala in the neural mechanisms of MASLD with MCI (MCI_MASLD) remains unclear.

View Article and Find Full Text PDF

Excess Ub-K48 Induces Neuronal Apoptosis in Alzheimer's Disease.

J Integr Neurosci

December 2024

Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.

Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.

View Article and Find Full Text PDF

Background: The relationship between subregion atrophy in the entire temporal lobe and subcortical nuclei and cognitive decline at various stages of Alzheimer's disease (AD) is unclear.

Methods: We selected 711 participants from the AD Neuroimaging Initiative (ADNI) database, which included 195 cases of cognitively normal (CN), 271 cases of early Mild cognitive impairment (MCI) (EMCI), 132 cases of late MCI (LMCI), and 113 cases of AD. we looked at how subregion atrophy in the temporal lobe and subcortical nuclei correlated with cognition at different stages of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!