Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CAG.CTG repeat expansions cause more than a dozen neurodegenerative diseases in humans. To define the mechanism of repeat instability in mammalian cells we developed a selectable assay to detect expansions of CAG.CTG triplet repeats in Chinese hamster ovary (CHO) cells. We showed previously that long tracts of CAG.CTG repeats, embedded in an intron of the APRT gene, kill expression of the gene, rendering the cells APRT-. By contrast, tracts with fewer than 34 repeats allow sufficient expression to give APRT+ cells. Although it should be possible to use APRT+ cells with short repeats to assay for expansion events by selecting for APRT- cells, we find that APRT+ cells with 31 repeats are not killed by the standard APRT- selection protocol, most likely because they produce too little Aprt to incorporate sufficient 8-azaadenine into their adenine pool. To overcome this problem, we devised a new selection, which increases the proportion of the adenine pool contributed by the salvage pathway by partially inhibiting the de novo pathway. We show that APRT- CHO cells with 61 or 95 CAG.CTG repeats survive this selection, whereas cells with 31 repeats die. Using this selection system, we can select for expansion to as few as 39 repeats. Thus, this assay can monitor expansions across the critical boundary from the longest lengths of normal alleles to the shortest lengths of disease alleles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrfmmm.2005.01.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!