p53 is required for spontaneous autoantibody production in B6/lpr lupus mice.

Eur J Immunol

Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, USA.

Published: May 2005

AI Article Synopsis

  • p53 is a tumor suppressor that plays a crucial role in triggering apoptosis (cell death) through the induction of the Fas receptor, which is significant in autoimmune responses.
  • The study examines the effects of removing p53 in mice that already have a Fas defect (lpr mice), hypothesizing that this would worsen their autoimmune symptoms.
  • Contrary to expectations, the double mutant mice (lpr with p53 knock-out) exhibited lower autoantibody levels compared to the single mutant lpr mice, suggesting that p53 may have a surprising role in the severity of autoimmune disease.

Article Abstract

The p53 tumor suppressor molecule triggers a key pathway of apoptosis in injured cells, in part through induction of Fas. The importance of Fas as a receptor mediating apoptosis is highlighted by the lupus-like systemic autoimmunity seen in animals and humans with nonfunctional Fas molecules. We set out to see if the absence of p53, superimposed on the Fas defect of lpr mice, might further accelerate or exacerbate their systemic autoimmunity. We generated double mutant mice (p53(-/-) lpr) having defects in both p53- and Fas-dependent pathways, hypothesizing that animals with lesions in both Fas- and p53-dependent pathways would show reduced ability to delete autoreactive or injured cells, thereby producing more severe autoimmune disease. Surprisingly, these mice have lower autoantibody levels than the single mutant lpr mice. These studies suggest an unanticipated role for p53 in the progression of autoimmunity and the production of autoantibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200525982DOI Listing

Publication Analysis

Top Keywords

injured cells
8
systemic autoimmunity
8
lpr mice
8
mice
5
p53
4
p53 required
4
required spontaneous
4
spontaneous autoantibody
4
autoantibody production
4
production b6/lpr
4

Similar Publications

Background: Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury.

View Article and Find Full Text PDF

Achieving myoblast engraftment into intact skeletal muscle via extracellular matrix.

Front Cell Dev Biol

January 2025

Department of Health Promotion Sciences, Graduated School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan.

Cell therapy of skeletal muscles is a promising approach for the prevention of muscular diseases and age-related muscle atrophy. However, cell transplantation to treat muscle atrophy that does not involve disease, such as sarcopenia, is considered impossible because externally injected cells rarely engraft into non-injured muscle tissue. Additionally, skeletal muscle-specific somatic stem cells, called satellite cells, lose their ability to adhere to tissue after being cultured and transforming into myoblasts.

View Article and Find Full Text PDF

Microenvironmental determinants of endothelial cell heterogeneity.

Nat Rev Mol Cell Biol

January 2025

Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

During development, endothelial cells (ECs) undergo an extraordinary specialization by which generic capillary microcirculatory networks spanning from arteries to veins transform into patterned organotypic zonated blood vessels. These capillary ECs become specialized to support the cellular and metabolic demands of each specific organ, including supplying tissue-specific angiocrine factors that orchestrate organ development, maintenance of organ-specific functions and regeneration of injured adult organs. Here, we illustrate the mechanisms by which microenvironmental signals emanating from non-vascular niche cells induce generic ECs to acquire specific inter-organ and intra-organ functional attributes.

View Article and Find Full Text PDF

Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging.

Nat Commun

January 2025

Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.

Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).

View Article and Find Full Text PDF

Introduction: Severe asthma is a chronic airway disease characterized by many pathomechanisms known as endotypes. Biological therapies targeting severe asthma endotypes have significantly improved the treatment of this disease, thus remarkably bettering patient quality of life.

Areas Covered: This review aims to describe current biological therapies for severe asthma, highlighting emerging ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!