Cationic oligopeptides, including the amphipathic alpha-helical peptides, are applied to the targeted delivery of DNA to eukaryotic cells due to their DNA-compacting properties and the ability to destabilize the cell lipid bilayer in some cases. We synthesized the peptides differing in the number and location of residues of decanoic acid covalently attached to Lys residues in order to combine the DNA-binding and the membrane activities in a single molecule. We chose peptide structures that assisted in the formation of alpha-helices. The DNA-binding ability of the peptides and the membrane activity of their complexes with DNA were shown to depend on the structure. The study of erythrocyte hemolysis by complexes with DNA of the pCMV LacZ plasmid and the peculiarities of transfection of these complexes revealed a correlation between the hemolytic activity and the expression level of the lacZ gene in the cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

complexes dna
8
[cationic oligopeptides
4
oligopeptides modified
4
modified lipophilic
4
lipophilic fragments
4
dna
4
fragments dna
4
dna delivery
4
delivery cells]
4
cells] cationic
4

Similar Publications

A developed TaqMan probe-based qPCR was used to quantify the distribution of AMDV in various tissues of infected mink and its prevalence in northern China.

Front Vet Sci

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.

Aleutian mink disease (mink plasmacytosis) is a severe immune complex-mediated condition caused by the Aleutian Mink Disease Virus (AMDV), the most significant pathogen affecting mink health in the industry. Several studies have shown that AMDV epidemics can result in millions to tens of millions of dollars in economic losses worldwide each year. In this study, we developed a TaqMan probe-based real-time PCR technology (TaqMan-qPCR) for the specific, sensitive, and reproducible detection and quantification of AMDV in mink tissues by the VP2 gene, achieving detection limits as low as 1.

View Article and Find Full Text PDF

The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.

View Article and Find Full Text PDF

Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential.

View Article and Find Full Text PDF

REV7: a small but mighty regulator of genome maintenance and cancer development.

Front Oncol

January 2025

Department of Biology, Tufts University, Medford, MA, United States.

REV7, also known as MAD2B, MAD2L2, and FANCV, is a HORMA-domain family protein crucial to multiple genome stability pathways. REV7's canonical role is as a member of polymerase ζ, a specialized translesion synthesis polymerase essential for DNA damage tolerance. REV7 also ensures accurate cell cycle progression and prevents premature mitotic progression by sequestering an anaphase-promoting complex/cyclosome activator.

View Article and Find Full Text PDF

Deciphering the complex molecular architecture of the genetically modified soybean FG72 through paired-end whole genome sequencing.

Food Chem (Oxf)

June 2025

Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.

The clear molecular characterization of genetically modified (GM) plants and animals is a prerequisite for obtaining regulatory approval and safety certification for commercial cultivation. This characterization includes the identification of the transferred DNA (T-DNA) insertion site, its flanking sequences, the copy number of inserted genes, and the detection of any unintended genomic alterations accompanying the transformation process. In this study, we performed a comprehensive molecular characterization of the well-known GM soybean event FG72 using paired-end whole-genome sequencing (PE-WGS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!