Optimizing the kernel in the empirical feature space.

IEEE Trans Neural Netw

Center for Signal Processing and Communications, Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.

Published: March 2005

In this paper, we present a method of kernel optimization by maximizing a measure of class separability in the empirical feature space, an Euclidean space in which the training data are embedded in such a way that the geometrical structure of the data in the feature space is preserved. Employing a data-dependent kernel, we derive an effective kernel optimization algorithm that maximizes the class separability of the data in the empirical feature space. It is shown that there exists a close relationship between the class separability measure introduced here and the alignment measure defined recently by Cristianini. Extensive simulations are carried out which show that the optimized kernel is more adaptive to the input data, and leads to a substantial, sometimes significant, improvement in the performance of various data classification algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2004.841784DOI Listing

Publication Analysis

Top Keywords

feature space
16
empirical feature
12
class separability
12
kernel optimization
8
space
5
data
5
optimizing kernel
4
kernel empirical
4
feature
4
space paper
4

Similar Publications

Municipal waste classification is significant for effective recycling and waste management processes that involve the classification of diverse municipal waste materials such as paper, glass, plastic, and organic matter using diverse techniques. Yet, this municipal waste classification process faces several challenges, such as high computational complexity, more time consumption, and high variability in the appearance of waste caused by variations in color, type, and degradation level, which makes an inaccurate waste classification process. To overcome these challenges, this research proposes a novel Channel and Spatial Attention-Based Multiblock Convolutional Network for accurately classifying municipal waste that utilizes a unique attention mechanism for enhancing feature learning and waste classification accuracy.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US.

Sensors (Basel)

January 2025

United States Department of Agriculture-Agriculture Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA.

Efficient and reliable corn ( L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers.

View Article and Find Full Text PDF

With the proliferation of mobile terminals and the rapid growth of network applications, fine-grained traffic identification has become increasingly challenging. Methods based on machine learning and deep learning have achieved remarkable results, but they heavily rely on the distribution of training data, which makes them ineffective in handling unseen samples. In this paper, we propose AG-ZSL, a zero-shot learning framework based on traffic behavior and attribute representations for general encrypted traffic classification.

View Article and Find Full Text PDF

Green infrastructure (GI) plays a crucial role in sustainable urban development, but effective mapping and analysis of such features requires a detailed understanding of the materials and state-of-the-art methods. This review presents the current landscape of green infrastructure mapping, focusing on the various sensors and image data, as well as the application of machine learning and deep learning techniques for classification or segmentation tasks. After finding articles with relevant keywords, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyzes) method was used as a general workflow, but some parts were automated (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!