Face membership authentication using SVM classification tree generated by membership-based LLE data partition.

IEEE Trans Neural Netw

Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1020, New Zealand.

Published: March 2005

This paper presents a new membership authentication method by face classification using a support vector machine (SVM) classification tree, in which the size of membership group and the members in the membership group can be changed dynamically. Unlike our previous SVM ensemble-based method, which performed only one face classification in the whole feature space, the proposed method employed a divide and conquer strategy that first performs a recursive data partition by membership-based locally linear embedding (LLE) data clustering, then does the SVM classification in each partitioned feature subset. Our experimental results show that the proposed SVM tree not only keeps the good properties that the SVM ensemble method has, such as a good authentication accuracy and the robustness to the change of members, but also has a considerable improvement on the stability under the change of membership group size.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNN.2004.841776DOI Listing

Publication Analysis

Top Keywords

svm classification
12
membership group
12
membership authentication
8
classification tree
8
lle data
8
data partition
8
face classification
8
svm
6
classification
5
face membership
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!