Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The adaptive immune system allows individual organisms to mount defensive reactions against unanticipated pathogens by developmentally creating a diverse repertoire of clonally distributed receptors capable of recognizing a multitude of antigens and then expanding as effector cell populations those that can recognize molecules from the pathogens. To function properly, the system must deal with the problem of randomly generated receptors that can recognize self components. Most solutions to this self-tolerance problem are cell intrinsic and involve the deletion or inactivation of autoreactive cells. However, an extrinsic form of dominant tolerance has been demonstrated that takes the form of CD4(+) regulatory T cells. This perspective discusses why such a mechanism might have evolved and the problems it presents for self-non-self discrimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ni1184 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!