Strongyloides stercoralis causes chronic asymptomatic infections which can be maintained in the human host for many decades. Identification and treatment of S. stercoralis-infected individuals is required because immunosuppression can lead to fatal hyperinfection. In this study, human immunoglobulin G (IgG) that had previously been shown to transfer protective immunity to mice was used to identify potential protective antigens. Three antigens or genes from S. stercoralis larvae were identified as tropomyosin (Sstmy-1), Na+-K+ ATPase (Sseat-6), and LEC-5 (Sslec-5). The genes were cloned into plasmids for DNA immunization, and mice were immunized intradermally with the three plasmids individually in combination with a plasmid containing murine granulocyte-macrophage colony-stimulating factor. Only Na+-K+ ATPase induced a significant reduction in larval survival after DNA immunization. Immunization with a combination of all three plasmids, including Na+-K+ ATPase, did not induce protective immunity. Serum from mice immunized with DNA encoding Na+-K+ ATPase was transferred to naive mice and resulted in partial protective immunity. Therefore, DNA immunization with Na+-K+ ATPase induces protective immunity in mice, and it is the first identified vaccine candidate against infection with larval S. stercoralis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087441PMC
http://dx.doi.org/10.1128/IAI.73.4.2298-2305.2005DOI Listing

Publication Analysis

Top Keywords

na+-k+ atpase
24
protective immunity
20
dna immunization
16
immunization na+-k+
8
atpase sseat-6
8
induces protective
8
strongyloides stercoralis
8
immunity mice
8
mice immunized
8
three plasmids
8

Similar Publications

As an abiotic stress factor, salinity significantly affects the physiological activities of crustaceans. In this study, transcriptome sequencing was used to evaluate the mechanism of ion transport and the physiological response of black tiger shrimp (Penaeus monodon) under low salt stress. Four hundred post larval (PL) stage P.

View Article and Find Full Text PDF

Acquired Dyschromatopsia and Its Link to Drug Toxicity.

Cureus

December 2024

Optometric - Glaucoma, Leicester Royal Infirmary, Leicester, GBR.

Colour vision defects (CVDs) can be both congenital and acquired, with acquired dyschromatopsia often associated with medication toxicity. This review explores various standardised colour vision tests used to detect these defects, including the Ishihara plate test, Farnsworth-Munsell 100 hue test, and anomaloscopes. These methods are evaluated for their effectiveness in diagnosing CVDs, particularly in acquired conditions.

View Article and Find Full Text PDF

Deciphering the sources of variability in drug responses requires to understand the processes modulating drug pharmacokinetics. However, pharmacological research suffers from poor reproducibility across clinical, animal, and experimental models. Predictivity can be improved by using Organs-on-Chips, which are more physiological, human-oriented, micro-engineered devices that include microfluidics.

View Article and Find Full Text PDF

Homeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions represent some of the most common perturbations to neural function in animals.

View Article and Find Full Text PDF

Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!