Antibodies against apical membrane antigen 1 (AMA-1) of Plasmodium falciparum inhibit merozoite invasion into erythrocytes. Invasion-inhibitory polyclonal AMA-1 antibodies inhibit secondary proteolytic processing and surface redistribution of AMA-1 on merozoites. We present evidence supporting inhibition of processing and redistribution as probable causes of inhibition of invasion by polyclonal antibodies. Polyclonal anti-AMA-1 was much more inhibitory than monoclonal antibody (MAb) 4G2dc1 in an invasion assay. Although both polyclonal and monoclonal immunoglobulin G (IgG) inhibited secondary processing of the 66-kDa form of AMA-1, only polyclonal IgG caused its anomalous processing, inhibited its redistribution, and cross-linked soluble forms of AMA-1 on merozoites. Moreover, Fab fragments of polyclonal IgG that fail to cross-link did not show the enhancement of inhibitory effect over intact IgG, as observed in the case of Fab fragments of MAb 4G2dc1. We propose that although blocking of biologically important sites is a common direct mode of action of anti-AMA-1 antibodies, blocking of AMA-1 secondary processing and redistribution are additional indirect inhibitory mechanisms by which polyclonal IgG inhibits invasion. We also report a processing inhibition assay that uses a C-terminal AMA-1-specific MAb, 28G2dc1, to detect merozoite-bound remnants of processing (approximately 20 kDa from normal processing to 48 and 44 kDa and approximately 10 kDa from anomalous processing to a 52-kDa soluble form of AMA-1). The ratio of intensity of 10-kDa bands to the sum of 10- and 20-kDa bands was positively correlated with inhibition of invasion by polyclonal antibodies. This assay may serve as an important immunochemical correlate for inhibition of invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087451PMC
http://dx.doi.org/10.1128/IAI.73.4.2116-2122.2005DOI Listing

Publication Analysis

Top Keywords

inhibition invasion
12
polyclonal igg
12
processing
9
mode action
8
apical membrane
8
membrane antigen
8
plasmodium falciparum
8
polyclonal
8
ama-1 merozoites
8
processing redistribution
8

Similar Publications

CircPRKD3-loaded exosomes concomitantly elicit tumor growth inhibition and glioblastoma microenvironment remodeling via inhibiting STAT3 signaling.

Neuro Oncol

January 2025

Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.

View Article and Find Full Text PDF

Invasive Lobular Carcinoma (ILC), a distinct subtype of breast cancer is hallmarked by E-Cadherin loss, slow proliferation, and strong hormone receptor positivity. ILC faces significant challenges in clinical management due to advanced stage at diagnosis, late recurrence, and development of resistance to endocrine therapy - a cornerstone of ILC treatment. To elucidate the mechanisms underlying endocrine resistance in ILC, ILC cell lines (MDA-MB-134-VI, SUM44PE) were generated to be resistant to tamoxifen, a selective estrogen receptor modulator.

View Article and Find Full Text PDF

Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!