A review of systems and networks of the limbic forebrain/limbic midbrain.

Prog Neurobiol

Department of Psychiatry, Center for Behavioral Development and Mental Retardation, Boston University School of Medicine, Boston, MA, USA.

Published: February 2005

Evolutionarily older brain systems, such as the limbic system, appear to serve fundamental aspects of emotional processing and provide relevant and motivational information for phylogenetically more recent brain systems to regulate complex behaviors. Overall, overt behavior is, in part, determined by the interactions of multiple learning and memory systems, some seemingly complementary and some actually competitive. An understanding of limbic system function in emotion and motivation requires that these subsystems be recognized and characterized as extended components of a distributed limbic network. Behavioral neuroscientists face the challenge of teasing apart the contributions of multiple overlapping neuronal systems in order to begin to elucidate the neural mechanisms of the limbic system and their contributions to behavior. One major consideration is to bring together conceptually the functions of individual components of the limbic forebrain and the related limbic midbrain systems. For example, in the rat the heterogeneous regions of the prefrontal cortex (e.g., prelimbic, anterior cingulate, subgenual cortices and orbito-frontal areas) make distinct contributions to emotional and motivational influences on behavior and each needs consideration in its own right. Major interacting structures of the limbic system include the prefrontal cortex, cingulate cortex, amygdaloid nuclear complex, limbic thalamus, hippocampal formation, nucleus accumbens (limbic striatum), anterior hypothalamus, ventral tegmental area and midbrain raphe nuclei; the latter comprising largely serotonergic components of the limbic midbrain system projecting to the forebrain. The posterior limbic midbrain complex comprising the stria medullaris, central gray and dorsal and ventral nuclei of Gudden are also key elements in the limbic midbrain. Some of these formations will be discussed in terms of the neurochemical connectivity between them. We put forward a systems approach in order to build a network model of the limbic forebrain/limbic midbrain system, and the interactions of its major components. In this regard, it is important to keep in mind that the limbic system is both an anatomical entity as well as a physiological concept. We have considered this issue in detail in the introduction to this review. The components of these systems have usually been considered as functional units or 'centers' rather than being components of a larger, interacting, and distributed functional system. In that context, we are oriented toward considerations of distributed neural systems themselves as functional entities in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pneurobio.2005.01.001DOI Listing

Publication Analysis

Top Keywords

limbic system
20
limbic midbrain
16
limbic
15
limbic forebrain/limbic
8
forebrain/limbic midbrain
8
systems
8
brain systems
8
system
8
components limbic
8
prefrontal cortex
8

Similar Publications

Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).

View Article and Find Full Text PDF

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

The left amygdala is genetically sexually-dimorphic: multi-omics analysis of structural MRI volumes.

Transl Psychiatry

January 2025

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.

Brain anatomy plays a key role in complex behaviors and mental disorders that are sexually divergent. While our understanding of the sex differences in the brain anatomy remains relatively limited, particularly of the underlying genetic and molecular mechanisms that contribute to these differences. We performed the largest study of sex differences in brain volumes (N = 33,208) by examining sex differences both in the raw brain volumes and after controlling the whole brain volumes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!