We have investigated pinning effects on texture and vortices of the B-like phase of superfluid (3)He in a rotating aerogel up to +/-2pi rad/s by cw-NMR. We observed deformation of the NMR spectra in rotation, due to counterflow between the superflow and the normal flow. The average intensity of the counterflow was calculated from the change of NMR spectra. The rotation dependence of the counterflow intensity is similar to the magnetization curve of hard type II superconductors or the counterflow response of (4)He-II in packed powders. This counterflow behavior is in qualitative agreement with a model that vortices are pinned unless the counterflow exceeds a critical velocity v(c). The temperature independence of v(c) suggests that v(c) is associated with the expansion of primordial vortices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.94.075301 | DOI Listing |
Nat Mater
January 2025
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Shark skin features superhydrophilic and riblet-textured denticles that provide drag reduction, antifouling, and mechanical protection. The artificial riblet structures exhibit drag reduction capabilities in turbulent flow. However, the effects of the surface wettability of shark denticles and the cavity region underneath the denticle crown on drag reduction remain insufficiently explored.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Institute of Engineering & Management, Department of Basic Science and Humanities, Institute of Engineering & Management, Salt Lake Electronics Complex, Sector V, Salt Lake, Kolkata 700091, India, University of Engineering & Management, University Area, Plot No. III, B/5, New Town Road, Action Area III, Newtown, Kolkata 700160, India, Calcutta, West Bengal, 700091, INDIA.
A magnetic vortex (MV) is one of the fundamental and topologically nontrivial spin textures in condensed matter physics. Magnetic vortices are usually the ground states in geometrically restricted ferromagnets with zero magnetocrystalline anisotropy. Magnetic vortices have recently been proposed for use in a variety of spintronics applications due to their resistance to thermal perturbations, flexibility in changing core polarity, simple patterning procedure, and potential uses in magnetic data storage with substantial density, sensors for the magnetic field, devices for logic operations, and other related fields.
View Article and Find Full Text PDFPNAS Nexus
December 2024
RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
Hydrodynamics is known to emerge in electron flow when the electron-electron interaction dominates over the other momentum-nonconserving scatterings. The hydrodynamic equation that describes the electric current includes viscosity, extending beyond the Ohmic flow. The laminar flow of such a viscous electron fluid in a sample with finite width is referred to as the Poiseuille flow, where the flow velocity is maximum at the center and decreases towards the edges of the sample.
View Article and Find Full Text PDFSoft Matter
December 2024
Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!