Transport coefficients of a gluon plasma.

Phys Rev Lett

RIISE, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.

Published: February 2005

Transport coefficients of gluon plasma are calculated for an SU(3) pure gauge model by lattice QCD simulations on 16(3) x 8 and 24(3) x 8 lattices. Simulations are carried out at slightly above the deconfinement transition temperature T(c), where a new state of matter is currently being pursued in BNL RHIC experiments. Our results show that the ratio of the shear viscosity to the entropy is less than one and the bulk viscosity is consistent with zero in the region 1.4 < or = T/T(c) < or = 1.8.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.94.072305DOI Listing

Publication Analysis

Top Keywords

transport coefficients
8
coefficients gluon
8
gluon plasma
8
plasma transport
4
plasma calculated
4
calculated su3
4
su3 pure
4
pure gauge
4
gauge model
4
model lattice
4

Similar Publications

Low-carbon fuels, emitting less carbon than fossil fuels, are proposed to help in the transition to a sustainable, decarbonized transport sector. The new biofuels being studied and developed in this context include hydrotreated vegetable oils (HVO). Its chemical composition, which is the same as fossil diesel (primarily composed of linear chain hydrocarbons C12-C24), makes HVO (more homogeneous mixtures of paraffinic hydrocarbons C10-C20, containing no sulfur or aromatics) a fuel with slightly lower density than fossil diesel due to these characteristics.

View Article and Find Full Text PDF

Purpose: Glucose metabolism is associated with several endocrine disorders. Anti-diabetes drugs are crucial in controlling diabetes and its complications; nevertheless, few studies have been carried out involving endocrine function. This study aimed to investigate the association between anti-diabetes drugs and endocrine parameters.

View Article and Find Full Text PDF

Road surface roughness is the cause of vehicle vibration, which is considered a system disturbance. Previous studies on suspension system control often ignore the influence of disturbances while designing the controller, leading to system performance degradation under severe vibration conditions. In this work, we propose a control method to improve active suspension performance that reduces vehicle vibration by eliminating the influence of road disturbances.

View Article and Find Full Text PDF

Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.

View Article and Find Full Text PDF

Collision integrals within the Chapman-Enskog theory for a generalized Lennard-Jones potential.

J Chem Phys

January 2025

Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS J7-10, Richland, Washington 99352, USA.

We report the values of the collision integrals, needed for the calculation of the macroscopic transport properties such as viscosity (η) and diffusion coefficient (D) of gases within the Chapman-Enskog kinetic gas theory, for a generalized Lennard-Jones potential (gLJ), a more general potential with an adjustable long range 1/r dependence that can describe a wide range of intermolecular interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!