Coherent molecular optics using ultracold sodium dimers.

Phys Rev Lett

Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA.

Published: February 2005

Coherent molecular optics is performed using two-photon Bragg scattering. Molecules were produced by sweeping an atomic Bose-Einstein condensate through a Feshbach resonance. The spectral width of the molecular Bragg resonance corresponded to an instantaneous temperature of 20 nK, indicating that atomic coherence was transferred directly to the molecules. An autocorrelating interference technique was used to observe the quadratic spatial dependence of the phase of an expanding molecular cloud. Finally, atoms initially prepared in two momentum states were observed to cross pair with one another, forming molecules in a third momentum state. This process is analogous to sum-frequency generation in optics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.94.040405DOI Listing

Publication Analysis

Top Keywords

coherent molecular
8
molecular optics
8
optics ultracold
4
ultracold sodium
4
sodium dimers
4
dimers coherent
4
optics performed
4
performed two-photon
4
two-photon bragg
4
bragg scattering
4

Similar Publications

Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.

View Article and Find Full Text PDF

ABCA4 Deep Intronic Variants Contributed to Nearly Half of Unsolved Stargardt Cases With a Milder Phenotype.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: The purpose of this study was to investigate the contribution and natural progression of ABCA4 deep intronic variants (DIVs) among a Chinese Stargardt disease (STGD) cohort.

Methods: For unsolved STGD probands, DIVs in ABCA4 were detected by next-generation sequencing, and splicing effects were evaluated by in silico tools and validated through minigene experiments. Comprehensive ocular examinations, especially fundus changes, were carried out and analyzed.

View Article and Find Full Text PDF

Novel index for the evaluation of wound healing following erupted tooth extraction.

Minerva Dent Oral Sci

January 2025

Department of Surgical, Medical, Molecular and Critical Area Pathology, University Hospital of Pisa, University of Pisa, Pisa, Italy.

Background: Understanding healing of the alveolar process is crucial for immediate implant, alveolar ridge preservation and guided bone regeneration procedures, and to evaluate it several different scales have been proposed; however, all have different characteristics and seem to miss a standardization allowing for an objective and dichotomous evaluation of the different aspects of wound healing. The objective of the present study is to propose and apply, in real clinical scenarios, a novel index for the objective evaluation of wound healing following erupted tooth extraction.

Methods: Healthy patients in need of a single tooth extraction were enrolled and re-examined at 7, 14 and 21 days after the extraction using the novel index proposed.

View Article and Find Full Text PDF

Coherent heterodyne lidars are typically used for windspeed and attenuated backscattering measurements. The lack of molecular backscattering detection capability has limited the calibrated backscattering measurements until recent advances in coherent lidar technology. In this work, the simultaneous detection of aerosol and molecular backscattering is demonstrated with coherent heterodyne lidar, and the results are compared with a state-of-the-art Raman lidar PollyXT as a reference in a long-range for the first time.

View Article and Find Full Text PDF

We demonstrate a versatile THz waveguide platform for tailored THz-induced orientation and alignment of gas molecules. The underlying waveguide structure is dispersionless, with a refractive index close to one, and enhances the electric as well as the magnetic field up to a factor of five. These properties increase the detected transient birefringence signal by more than an order of magnitude compared to conventional THz free space focusing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!