Kinetic theory of random graphs: from paths to cycles.

Phys Rev E Stat Nonlin Soft Matter Phys

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: February 2005

The structural properties of evolving random graphs are investigated. Treating linking as a dynamic aggregation process, rate equations for the distribution of node to node distances (paths) and of cycles are formulated and solved analytically. At the gelation point, the typical length of paths and cycles, l , scales with the component size k as l approximately k(1/2) . Dynamic and finite-size scaling laws for the behavior at and near the gelation point are obtained. Finite-size scaling laws are verified using numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.71.026129DOI Listing

Publication Analysis

Top Keywords

paths cycles
12
random graphs
8
gelation point
8
finite-size scaling
8
scaling laws
8
kinetic theory
4
theory random
4
graphs paths
4
cycles structural
4
structural properties
4

Similar Publications

Deep learning methods have shown significant potential in tool wear lifecycle analysis. However, there are fewer open source datasets due to the high cost of data collection and equipment time investment. Existing datasets often fail to capture cutting force changes directly.

View Article and Find Full Text PDF

Changes in water, energy, and food (WEF) trade patterns may reshape water circulation patterns, leading to potential water supply and demand risks. Analysis of virtual water risk transmission characteristics and driving factors from the perspective of WEF trade is highly important for alleviating the risk of water shortages and promoting the efficient use of resources. In this paper, a set of methods for quantifying risk transmission values is constructed on the basis of China's interregional input-output model, and the key paths of interregional virtual water risk transmission caused by WEF trade are identified using innovative methods.

View Article and Find Full Text PDF

Carbon reduction effect of comprehensive land consolidation and its configuration paths at the township level: A case study of Zhejiang Province, China.

J Environ Manage

January 2025

College of Management of Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Key Laboratory of Philosophy and Social Science, National Key Laboratory of Food Security and Tianfu Granary, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:

Changing land use is one of the main factors influencing global climate change and the imbalance in the carbon cycle. Consequently, the focus of international organizations and the academic community is on strategies to mitigate carbon emissions or improve carbon sequestration by optimizing land use structure and function. Since 2019, China's Zhejiang Province has implemented a township-level pilot policy, exploring a comprehensive land consolidation (CLC for short) pilot policy that includes all elements of "mountains, rivers, forests, farmlands, lakes, and grasslands.

View Article and Find Full Text PDF

This paper proposes Pomarine jaeger Optimization (PJO) algorithm, Tiger hunting Optimization (THO) Algorithm, Desert Reynard and Vixen Inspired Optimization (DRVIO) Algorithm, Lonchodidae optimization (LO) algorithm, Caracal optimization (CO) algorithm, Barasingha optimization (BO) algorithm, Amur leopard optimization (AO) algorithm and Empress SARANI Optimization Algorithm to solve the active power loss reduction problem. Regular actions of Pomarine jaeger have been emulated to model the PJO procedure. In THO algorithm, how the Tiger moves to capture the prey is imitated and formulated.

View Article and Find Full Text PDF

Learning to Cycle: Why Is the Balance Bike More Efficient than the Bicycle with Training Wheels? The Lyapunov's Answer.

J Funct Morphol Kinesiol

December 2024

Sport Sciences School of Rio Maior, Santarém Polytechnic University, Avenue Dr. Mário Soares No. 110, 2040-413 Rio Maior, Portugal.

Background/objectives: Riding a bicycle is a foundational movement skill that can be acquired at an early age. The most common training bicycle has lateral training wheels (BTW). However, the balance bike (BB) has consistently been regarded as more efficient, as children require less time on this bike to successfully transition to a traditional bike (TB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!