A reduced kinetics model is proposed for ion permeation in low-conductance potassium ion channels with zero net electrical charge in the selectivity filter region. The selectivity filter is assumed to be the only conductance-determining part of the channel. Ion entry and exit rate constants depend on the occupancy of the filter due to ion-ion interactions. The corresponding rates are assumed slow relative to the rates of ion motion between binding sites inside the filter, allowing a reduction of the kinetics model of the filter by averaging the entry and exit rate constants over the states with a particular occupancy number. The reduced kinetics model for low-conductance channels is described by only three states and two sets of effective rate constants characterizing transitions between these states. An explicit expression for the channel conductance as a function of symmetrical external ion concentration is derived under the assumption that the average electrical mobility of ions in the selectivity filter region in a limited range of ion concentrations does not depend on these concentrations. The simplified conductance model is shown to provide a good description of the experimentally observed conductance-concentration curve for the low-conductance potassium channel Kir2.1, and also predicts the mean occupancy of the selectivity filter of this channel. We find that at physiological external ion concentrations this occupancy is much lower than the value of two ions observed for one of the high-conductance potassium channels, KcsA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.71.021912 | DOI Listing |
J Bioenerg Biomembr
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka, 560-8531, Japan.
Fibrillation of the amyloid beta (Aβ) peptide has often been associated with neurodegenerative pathologies such as Alzheimer's disease. In this study we examined the influence of several potential compositions of the lipid membrane on Aβ fibrillation by using liposomes as a basic model membrane. Firstly, it was revealed that Aβ fibrillation kinetics were enhanced and had the potential to occur at a faster rate on more fluid membranes compared to solid membranes.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China.
Purpose: To explore the dynamic and parametric characteristics of [F]F-FAPI-42 PET/CT in lung cancers.
Methods: Nineteen participants with newly diagnosed lung cancer underwent 60-min dynamic [F]F-FAPI-42 PET/CT. Time-activity curves (TAC) were generated for tumors and normal organs, with kinetic parameters (K, K, K, K, K) calculated.
J Mol Model
January 2025
Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, Brazil.
Context: Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide.
View Article and Find Full Text PDFRev Med Chil
May 2024
Escuela de Kinesiología, Universidad de los Andes, Santiago, Chile.
Unlabelled: Biomechanical analysis of gait encompasses the measurement of spatiotemporal (STVs), kinematics, and kinetics variables. The behavior of these variables can provide clinicians and researchers with insights into the normality or alteration of this motor act across different populations. However, there is a lack of reference data for the Chilean population.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina.
The dependence of the rate constant of the recombination reaction of CCl and NO radicals on temperature and pressure was studied. Quantum-chemical calculations were employed to characterize relevant aspects of the potential energy surface for this process. The limiting rate constants between 300 and 2000 K were analyzed using the unimolecular reactions theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!