The water-promoted hydrolysis of a highly twisted amide is studied using density functional theory in conjunction with a continuum dielectric method to introduce bulk solvent effects. The aim of these studies is to reveal how the twisting of the C-N bond affects the neutral hydrolysis of amides. To do so, both concerted and stepwise mechanisms are studied and the results compared to the ones from the hydrolysis of an undistorted amide used as reference. In addition, an extra explicit water molecule that assists in the required proton-transfer processes is taken into account. Our results predict important rate accelerations of the neutral hydrolysis of amides when the C-N bond is highly twisted, the corresponding barrier relaxation depending on the specific reaction pathway and transition state involved. Moreover, our calculations strongly suggest a change in reaction mechanism with degree of amide bond twist, and clearly point to a concerted mechanism at neutral pH for the hydrolysis of highly twisted amides. In addition, the twisting of the amide bond also provokes a higher dependence on an auxiliary water molecule for the concerted mechanism, due to the orthogonality of the lone pair of the nitrogen and the carbonyl pi orbital. There is a direct implication of these findings for biological catalytic mechanism of peptide cleavage reactions that undergoes ground-state destabilization of the peptide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja044873vDOI Listing

Publication Analysis

Top Keywords

highly twisted
16
hydrolysis highly
12
amide bond
12
neutral hydrolysis
12
water-promoted hydrolysis
8
twisted amide
8
c-n bond
8
hydrolysis amides
8
water molecule
8
concerted mechanism
8

Similar Publications

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

The two-fold reduction of tetrabenzo[a,c,e,g]cyclooctatetraene (TBCOT, or tetraphenylene, 1) with K, Rb, and Cs metals reveals a distinctive core transformation pathway: a newly formed C-C bond converts the central eight-membered ring into a twisted core with two fused five-membered rings. This C-C bond of 1.589(3)-1.

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

Programmable organization of uniform organic/inorganic functional building blocks into large-scale ordered superlattices has attracted considerable attention since the bottom-up self-organization strategy opens up a robust and universal route for designing novel and multifunctional materials with advanced applications in memory storage devices, catalysis, photonic crystals, and biotherapy. Despite making great efforts in the construction of superlattice materials, there still remains a challenge in the preparation of organic/inorganic hybrid superlattices with tunable dimensions and exotic configurations. Here, we report the spontaneous self-organization of polystyrene-tethered gold nanoparticles (AuNPs@PS) into freestanding organic/inorganic hybrid superlattices templated at the diethylene glycol-air interface.

View Article and Find Full Text PDF

Unusual high fluorescence of a 7,7'-diazaisoindigo derivative: A photophysical study.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain. Electronic address:

7,7'-Diazaisoindigos are π-conjugated compounds but with poor luminescence properties. Their poor luminescence is generally attributed to the twisting around the central C-C bond in the excited state which favors non-radiative decay. We have found an unusual high fluorescence quantum yield (Φ ≈ 15 %) in a N,N‑Octyl-7,7'-diazaisoindigo derivative incorporating two triphenylamine (TPA) subunits at 5,5'-positions (called compound 12).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!