A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Use of 2,2'-azobis(2-amidinopropane) dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs. | LitMetric

Purpose: To study the oxidative degradation of drugs using a hydrophilic free radical initiator, 2,2'-Azobis(-amidinopropane) dihydrochloride (AAPH).

Methods: AAPH was used as the free radical initiator to study oxidation of three model compounds (A, B, and C), which represent different oxidizable moieties. In the solution model, the drugs and AAPH were dissolved in a mixture of acetonitrile and aqueous buffer and incubated at elevated temperatures to evaluate oxidative degradation. The effects of pH and drug-AAPH ratio on the kinetics of the reaction were evaluated for compound A. Commonly used antioxidants were also evaluated by addition to solutions of drug and AAPH. In the solid-state model, blends of drug with microcrystalline cellulose were treated with AAPH and placed at elevated temperature and humidity to evaluate solid state oxidation.

Results: Use of AAPH resulted in selective oxidation of the model drugs by a free radical initiated process. The scope of the technique was further investigated in detail using compound A. The rate of oxidation of compound A varied directly with the concentration of AAPH. The pseudo first-order rate constants for the oxidative degradation were calculated from the kinetic data. The antioxidants were rank-ordered based on their quenching activity on the rates of AAPH initiated oxidation for compound A. The concept was extended to oxidation in solid state.

Conclusions: The proposed AAPH model is useful in assessing oxidative stability of drug candidates in development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-004-1199-xDOI Listing

Publication Analysis

Top Keywords

oxidative degradation
12
free radical
12
oxidative stability
8
radical initiator
8
aaph
8
model drugs
8
oxidation compound
8
oxidative
5
oxidation
5
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!