Purpose: Multidrug-resistance-associated protein 2 (Mrp2) shows a broad substrate specificity toward amphiphilic organic anions. This study identified key functional groups of ligand molecules for binding to rat Mrp2, determined their relative locations, and examined substrate specificity through receptor mapping using three-dimensional (3D) quantitative structure-activity relationship (3D-QSAR) analysis.
Methods: Ligand-binding conformations were estimated using conformational analysis (CAMDAS) and molecular superposition (SUPERPOSE) methods to clarify the substrate specificity of rat Mrp2 in relation to 3D ligand structures.
Results: Two types of binding conformations of ligands for rat Mrp2 were identified. 3D-QSAR comparative molecular-field analysis (CoMFA) revealed a statistically significant model for one type, in which the steric, electrostatic, and log P contributions to the binding affinity for rat Mrp2 were 63.0%, 33.4%, and 3.6%, respectively (n = 16, q2 = 0.59, n = 3, r2 = 0.99, and s = 0.08).
Conclusions: The 3D pharmacophore of ligands for rat Mrp2, and the ligand-binding region of rat Mrp2, were estimated. Ligand recognition of rat Mrp2 is achieved through interactions in two hydrophobic and two electrostatically positive sites (primary binding sites). The broad substrate specificity of rat Mrp2 might result from the combination of secondary (two electrostatically positive and two electrostatically negative sites) and primary binding sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s01869-005-1869-8 | DOI Listing |
Regen Ther
June 2024
Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan.
Introduction: Exploring techniques for differentiating and culturing canine hepatocytes serves as a means to establish systems for liver transplantation and drug metabolism testing. However, establishing consistent methods for culturing stable hepatocytes remains a challenge. Recently, several investigations have shown the reprogramming of mature hepatocytes into hepatic progenitor cells by applying specific small molecule compounds, including Y-27632, (a ROCK inhibitor), A-83-01 (a TGFβ inhibitor), and CHIR99021 (a GSK3 inhibitor) (termed YAC) in rat, mouse, and humans, respectively.
View Article and Find Full Text PDFEur J Drug Metab Pharmacokinet
November 2024
Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Kaifu District, Changsha, 410008, Hunan, China.
Background And Objectives: Hypertensive nephropathy (HN) has become one of the main causes of end-stage renal disease. Drug combination therapy is a common clinical treatment for HN. However, the impact of HN on drug-metabolizing enzymes and transporters, which may lead to drug-drug interactions (DDIs) and even trigger toxic side effects, remains unclear.
View Article and Find Full Text PDFThis study used Caco-2 cells and normal rats to investigate the in vitro absorption characteristics and in vivo pharmacokinetic characteristics of cannabidiol(CBD) and explore the anti-inflammatory mechanism of CBD. The safe concentration range of CBD was determined by the CCK-8 assay, and then the effects of time, concentration, temperature, endocytosis inhibitors, and transport inhibitors on the transepithelial absorption and transport of CBD were assessed. The blood drug concentration was measured at different time points after oral administration in rats for pharmacokinetic profiling, and the pharmacokinetic parameters were calculated.
View Article and Find Full Text PDFBiomed Pharmacother
October 2024
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810001, PR China. Electronic address:
Purpose: To improve the oral bioavailability of albendazole (ABZ), a series of albendazole-bile acid conjugates (ABCs) were synthesized. ABC's transmembrane transport mechanism and in vivo pharmacokinetic properties were preliminarily studied.
Methods: The transmembrane transport mechanism of ABCs was studied using the Caco-2 monolayer cell model and intestinal perfusion model.
Sci Rep
July 2024
Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
Emodin (EMO) has the effect of anti-cholestasis induced by alpha-naphthylisothiocyanate (ANIT). But its mechanism is still unclear. The farnesoid X receptor (Fxr) is the master bile acid nuclear receptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!