NAD(P)H:quinone oxidoreductase 1 (NQO1) is a cytosolic protein that catalyzes metabolic detoxification of quinones and protects cells against redox cycling and oxidative stress. NQO1-null mice deficient in NQO1 protein showed increased sensitivity to 7,12-dimethylbenz(a)anthracene- and benzo(a)pyrene-induced skin carcinogenesis. In the present studies, we show that benzo(a)pyrene metabolite benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide and not benzo(a)pyrene quinones contributed to increased benzo(a) pyrene-induced skin tumors in NQO1-null mice. An analysis of untreated skin revealed an altered intracellular redox state due to accumulation of NADH and reduced levels of NAD/NADH in NQO1-null mice as compared with wild-type mice. Treatment with benzo(a)pyrene failed to significantly increase p53 and apoptosis in the skin of NQO1-null mice when compared with wild-type mice. These results led to the conclusion that altered intracellular redox state along with lack of induction of p53 and decreased apoptosis plays a significant role in increased sensitivity of NQO1-null mice to benzo(a)pyrene-induced skin cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-3157 | DOI Listing |
J Biol Chem
February 2013
Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA.
NADPH:quinone oxidoreductase 1 (NQO1) is recognized as a major susceptibility gene for ozone-induced pulmonary toxicity. In the absence of NQO1 as can occur by genetic mutation, the human airway is protected from harmful effects of ozone. We recently reported that NQO1-null mice are protected from airway hyperresponsiveness and pulmonary inflammation following ozone exposure.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2012
Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA.
Mucous cell metaplasia (MCM) and neutrophil-predominant airway inflammation are pathological features of chronic inflammatory airway diseases. A signature feature of MCM is increased expression of a major respiratory tract mucin, MUC5AC. Neutrophil elastase (NE) upregulates MUC5AC in primary airway epithelial cells by generating reactive oxygen species, and this response is due in part to upregulation of NADPH quinone oxidoreductase 1 (NQO1) activity.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2012
Medical College of Wisconsin, Zablocki VAMC, Milwaukee, WI 53295, USA.
Previous studies showed that coenzyme Q(1) (CoQ(1)) reduction on passage through the rat pulmonary circulation was catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex I, but that NQO1 genotype was not a factor in CoQ(1) reduction on passage through the mouse lung. The aim of the present study was to evaluate the complex I contribution to CoQ(1) reduction in the isolated perfused wild-type (NQO1(+/+)) and Nqo1-null (NQO1(-)/(-)) mouse lung. CoQ(1) reduction was measured as the steady-state pulmonary venous CoQ(1) hydroquinone (CoQ(1)H(2)) efflux rate during infusion of CoQ(1) into the pulmonary arterial inflow.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2011
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
The quinones duroquinone (DQ) and coenzyme Q(1) (CoQ(1)) and quinone reductase inhibitors have been used to identify reductases involved in quinone reduction on passage through the pulmonary circulation. In perfused rat lung, NAD(P)H:quinone oxidoreductase 1 (NQO1) was identified as the predominant DQ reductase and NQO1 and mitochondrial complex I as the CoQ(1) reductases. Since inhibitors have nonspecific effects, the goal was to use Nqo1-null (NQO1(-)/(-)) mice to evaluate DQ as an NQO1 probe in the lung.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
July 2009
Division of Pediatric Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center, Box 2994, Durham, NC 27710, USA.
One host susceptibility factor for ozone identified in epidemiologic studies is NAD(P)H quinone oxidoreductase 1 (NQO1). We hypothesized that after ozone exposure, NQO1 is required to increase 8-isoprostane (also known as F(2)-isoprostane) production, a recognized marker of ozone-induced oxidative stress, and to enhance airway inflammation and hyperresponsiveness. In this report, we demonstrate that in contrast to wild-type mice, NQO1-null mice are resistant to ozone and have blunted responses, including decreased production of F(2)-isoprostane and keratinocyte chemokine, decreased airway inflammation, and diminished airway hyperresponsiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!