TRPM7/ChaK1 is a unique channel/kinase that contains a TRPM channel domain with 6 transmembrane segments fused to a novel serine-threonine kinase domain at its C terminus. The goal of this study was to investigate a possible role of kinase activity and autophosphorylation in regulation of channel activity of TRPM7/ChaK1. Residues essential for kinase activity were identified by site-directed mutagenesis. Two major sites of autophosphorylation were identified in vitro by mass spectrometry at Ser(1511) and Ser(1567), and these sites were found to be phosphorylated in intact cells. TRPM7/ChaK1 is a cation-selective channel that exhibits strong outward rectification and inhibition by millimolar levels of internal [Mg(2+)]. Mutation of the two autophosphorylation sites or of a key catalytic site that abolished kinase activity did not alter channel activity measured by whole-cell recording or Ca(2+) influx. Inhibition by internal Mg(2+) was also unaffected in the autophosphorylation site or "kinase-dead" mutants. Moreover, kinase activity was enhanced by Mg(2+), was decreased by Zn(2+), and was unaffected by Ca(2+). In contrast, channel activity was inhibited by all three of these divalent cations. However, deletion of much of C-terminal kinase domain resulted in expression of an apparently inactive channel. We conclude that neither current activity nor regulation by internal Mg(2+) is affected by kinase activity or autophosphorylation but that the kinase domain may play a structural role in channel assembly or subcellular localization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M413671200 | DOI Listing |
mBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).
View Article and Find Full Text PDFBackground: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
J Cell Sci
January 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, USA.
This study investigated possible mechanisms underlying differences between heterophilic and homophilic cadherin adhesions that influence intercellular mechanics and multicellular organization. Results suggest that homophilic cadherin ligation selectively activates force-transduction, such that resulting signaling and mechano-transduction amplitudes are independent of cadherin binding affinities. Epithelial (E-) and neural (N-) cadherin cooperate with distinct growth factors to mechanically activate force-transduction cascades.
View Article and Find Full Text PDFJ Clin Invest
January 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!