The class IV semaphorin Sema4A provides a costimulatory signal to T cells. To investigate the possible developmental and regulatory roles of Sema4A in vivo, we generated Sema4A-deficient mice. Although Sema4A-deficient mice develop normally, DCs and T cells from knockout mice display poor allostimulatory activities and T helper cell (Th) differentiation, respectively. Interestingly, in addition to its expression on DCs, Sema4A is upregulated on Th1-differentiating cells, and it is necessary for in vitro Th1 differentiation and T-bet expression. Consequently, in vivo antigen-specific T cell priming and antibody responses against T cell-dependent antigens are impaired in the mutant mice. Additionally, Sema4A-deficient mice exhibit defective Th1 responses. Furthermore, reconstitution studies with antigen-pulsed DCs reveal that DC-derived Sema4A is important for T cell priming, while T cell-derived Sema4A is involved in developing Th1 responses. Collectively, these results indicate a nonredundant role of Sema4A not only in T cell priming, but also in the regulation of Th1/Th2 responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2005.01.014DOI Listing

Publication Analysis

Top Keywords

cell priming
16
sema4a-deficient mice
16
roles sema4a
8
th1 responses
8
sema4a cell
8
sema4a
7
mice
6
cell
5
nonredundant roles
4
sema4a immune
4

Similar Publications

The ionizable lipid component of lipid nanoparticle (LNP) formulations is essential for mRNA delivery by facilitating endosomal escape. Conventionally, these lipids are synthesized through complex, multistep chemical processes that are both time-consuming and require significant engineering. Furthermore, the development of new ionizable lipids is hindered by a limited understanding of the structure-activity relationships essential for effective mRNA delivery.

View Article and Find Full Text PDF

We lack tools to edit DNA sequences at scales necessary to study 99% of the human genome that is noncoding. To address this gap, we applied CRISPR prime editing to insert recombination handles into repetitive sequences, up to 1697 per cell line, which enables generating large-scale deletions, inversions, translocations, and circular DNA. Recombinase induction produced more than 100 stochastic megabase-sized rearrangements in each cell.

View Article and Find Full Text PDF

SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity.

View Article and Find Full Text PDF

Cross-priming in cancer immunology and immunotherapy.

Nat Rev Cancer

January 2025

Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.

Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8 T cell immune responses.

View Article and Find Full Text PDF

Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still poorly understood. Here we examined the role of adaptations in risk-taking using a reward-guided decision-making task. We recruited volunteers with high (n = 40) scores on the Mood Disorder Questionnaire, MDQ, suspected of high risk for bipolar disorder and those with low-risk scores (n = 37).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!