Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and in clinical studies. However, the mechanism by which US achieves these outcomes is not clear. Here we investigated the effect of US stimulation on the differentiation of osteoblasts and osteoclastogenesis. The effect of different intensities of US stimulation (1 MHz, continuous wave) on the osteoblastic cell line MC3T3-E1 or primary cultured osteoblasts was examined. Flow cytometry showed that US stimulation at 125 mW/cm2 for 10 min transiently increased the surface expression of alpha2, alpha5, and beta1 integrins in both MC3T3-E1 and primary osteoblasts. Fluorocytochemistry showed that the actin cytoskeleton also reorganized in response to US stimulation. When the MC3T3-E1 cells were cultured in differentiation medium containing vitamin C and beta-glycerophosphate, long-term US stimulation (10 min/day for 11 days) increased mineralized nodule formation, collagen content, and alkaline phosphatase activity. The intensity at 125 mW/cm2 exerts the most prominent action. Effect of long-term US stimulation on the osteoclastogenesis was also examined. US stimulation at a power of 62.5 or 125 mW/cm2 markedly inhibited RANKL plus M-CSF-induced osteoclastic differentiation from bone marrow stromal cells. These findings suggest that US has a regulatory effect on the integrin expression and the differentiation of osteoblasts and osteoclastogenesis, which may contribute to the beneficial effects of US on the fracture repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2004.10.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!