Various new tuberculosis (TB) vaccine candidates in combination with new delivery systems, including subunit vaccines, are currently being evaluated by a number of laboratories. One vaccine candidate that has shown promising protective capacity in mice and guinea pigs is a fusion of Ag85B and ESAT-6. In this study, we have investigated the efficacy of this Ag85B-ESAT-6 fusion protein vaccine in a non-human primate model for TB. Vaccination of cynomolgus monkeys with the Ag85B-ESAT-6 fusion protein in two different adjuvant (DDA/MPL, AS02A) resulted in a reduction in bacterial number and/or lung pathology in animals challenged with Mycobacterium tuberculosis. Vaccination prevented an increase in C-reactive protein serum levels, general activation of CD4 and CD8 subsets and boosted development of humoral and cellular immune responses to a spectrum of mycobacterial antigens on exposure to M. tuberculosis infection. We show, in two independent experiments, that vaccination of primates with Ag85B-ESAT-6 induces protective immune responses, suggesting that Ag85B-ESAT-6 is a strong candidate for further clinical evaluation. As far as we are aware this is the first report of protection in primates with a subunit vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2004.11.051DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
mycobacterium tuberculosis
8
tuberculosis infection
8
subunit vaccine
8
ag85b-esat-6 fusion
8
immune responses
8
vaccine
5
protection macaques
4
macaques mycobacterium
4
tuberculosis
4

Similar Publications

Arabidopsis has served as a model plant for studying the genetic networks that guide gynoecium development. However, less is known about other species such as tomato, a model for fleshy fruit development and ripening. Here, we study in tomato the transcription factor SPATULA (SPT), a bHLH-family member that in Arabidopsis is known to be important for gynoecium development.

View Article and Find Full Text PDF

Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on poly(ADP-ribose) polymerase (PARP) inhibitors, which are subject to high rates of innate or acquired resistance in patients. Here, we used CRISPR/Cas9-based screening to identify DNA Ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1-mutant cells across a variety of breast and ovarian cancer cell lines.

View Article and Find Full Text PDF

The concentrations of individual proteins vary between cells, both developmentally and stochastically. The functional consequences of this variation remain largely unexplored due to limited experimental tools to manipulate the relationship of protein concentration to activity. Here, we introduce a genetically encoded tool based on a tunable amyloid that enables precise control of protein concentration thresholds in cells.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.

View Article and Find Full Text PDF

Recent work has demonstrated that the soluble photoconvertable fluorescent protein mEOS can be a reporter for AAA+ (ATPases Associated with diverse cellular Activities) unfoldase activity. Given that many AAA+ proteins process membrane proteins, we sought to adapt mEOS for use with membrane protein substrates. However, direct genetic fusion of mEOS to a membrane protein completely abolished fluorescence, severely limiting the utility of mEOS for studying AAA+ proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!