Fluorescent metal ion indicators based on benzoannelated crown systems: a green fluorescent indicator for intracellular sodium ions.

Bioorg Med Chem Lett

Molecular Probes Invitrogen Detection Technologies, 29851 Willow Creek Road, Eugene, OR 97402, USA.

Published: April 2005

The synthesis and metal binding properties of cation-sensitive fluorescent indicators intended for biological applications are described. The increase of the crown ether ring size enhances the affinity for larger cations, but weakens the fluorescent response and selectivity. A compound having a 15-crown-5 chelator directly attached to a 2,7-difluoroxanthenone fluorophore loads into live cells and responds to sodium ion concentration changes with large fluorescence increases in the visible wavelength range.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.02.017DOI Listing

Publication Analysis

Top Keywords

fluorescent
4
fluorescent metal
4
metal ion
4
ion indicators
4
indicators based
4
based benzoannelated
4
benzoannelated crown
4
crown systems
4
systems green
4
green fluorescent
4

Similar Publications

A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.

View Article and Find Full Text PDF

Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism.

Per Med

January 2025

Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

KRS-1, a biocompatible nickel(II) complex, is introduced as a potent fluorescent probe for PrP fibrillar aggregates. KRS-1 shows a 15-fold enhancement in PL intensity and detects all stages of PrP aggregation. Fluorescence microscopy confirms its efficacy in identifying PrP fibrillar aggregates in HT-22 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!