The external-anomeric torsional effect.

Carbohydr Res

Center for Computational Chemistry, University of Georgia, Chemistry Annex, Athens, GA 30602-2526, USA.

Published: April 2005

The rotational barrier for a methyl group at the end of an anomeric system is sometimes lower than we might have anticipated. Thus, in the trans-trans conformation of dimethoxymethane, the barrier to methyl rotation is calculated (B3LYP/6-311++G(2d,2p)) to be 2.22 kcal/mol, just slightly smaller than the corresponding barrier to rotation of the methyl group in methyl propyl ether of 2.32 kcal/mol. However, if the methyl being rotated in dimethoxymethane is placed into a gauche conformation, that rotational barrier is reduced to 1.52 kcal/mol. This substantial (0.80 kcal/mol relative to methyl propyl ether) reduction in barrier height in the latter case is attributed mainly to the change in the bond order of the C-O bond to which the methyl is attached, as a function of conformation, which in turn is a result of the anomeric effect. We have called this barrier lowering the external-anomeric torsional effect. This effect is apparently widespread in carbohydrates, and it results in the changing of conformational energies by up to about 2 kcal/mol. If polysaccharide potential surfaces are to be accurately mapped by molecular mechanics, this effect clearly needs to be accounted for.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2005.01.032DOI Listing

Publication Analysis

Top Keywords

external-anomeric torsional
8
rotational barrier
8
barrier methyl
8
methyl group
8
methyl propyl
8
propyl ether
8
methyl
7
barrier
6
kcal/mol
5
torsional rotational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!