The organ of Corti of the echolocating horseshoe bat (Rhinolophus rouxi) was investigated with scanning electron microscopy in order to provide a comparison with non-echolocating mammals. Throughout the cochlea of horseshoe bats, each outer hair cell (OHC) possesses three rows of stereocilia and there are no morphological distinctions among the different rows of OHCs. However, there are morphological differences between different regions along the cochlea. In the lower and upper basal turn, the receptor surfaces of OHCs are characterized by extremely wide W-shaped stereocilia bundles and wingshaped cuticular plates. The cuticular plates of OHCs of the middle and outermost rows are arranged parallel to each other. Stereocilia length is only 0.8 microns and there is an exaggerated angle of inclination of the shortest row of stereocilia towards the next taller one. Stereocilia arrangements in the apex of the horseshoe bat's cochlea closely resembles those observed in the midbasal region of the rat cochlea. Inner hair cells (IHC) in the lower basal turn appear specialized. They possess only two rows of stereocilia and only 7-8 stereocilia per row. Their cuticular plates are small and oval and widely separated from one another in the longitudinal direction. IHCs at all other locations possess three and up to four rows of stereocilia and 17-20 stereocilia per row. Their cuticular plates are elongated and closely spaced. The transition from specialized to typical mammalian morphology occurs abruptly (over a distance of about 100-150 microns) at the border between the lower and the upper basal turn. This transition is not accompanied by a change in OHC morphology. In the subsurface of the tectorial membrane, throughout the cochlea, there are distinct imprints of the tallest row of stereocilia of all three rows of OHCs and of the IHCs. Data are discussed in relation to specialized aspects of the cochlear frequency map in horseshoe bats and as possible micromechanical adaptations to ultra-high frequency hearing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.903180403 | DOI Listing |
Zookeys
November 2024
Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences, Portovaya Str., 18, Magadan 68500, Russia Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences Magadan Russia.
Bothrial morphology was studied by SEM in 137 araneoid genera representing all 22 currently recognized extant families and all 42 conventional subfamilies of the Araneoidea. The ancestral type in the superfamily Araneoidea is a 'hooded' bothrium with a single well-developed transverse ridge, dividing its proximal and distal plates ('-type'); the advanced type is a solid dome-like bothrium without vestiges of the ridge ('-type'); there are several intermediate types reflecting various pathways and stages of the ridge reduction (united here as '-type'). The parallel trends in bothrial evolution, recognized as continuous series from the ancestral type up to the advanced one through some intermediate stages, are distinguished in each of the seven main phylogenetic lineages of the superfamily: 'tetragnathoids', 'araneoids', 'cyatholipoids', and 'theridioids' possess a complete set of the three types, while 'malkariods', 'symphytognathoids'.
View Article and Find Full Text PDFInsects
October 2024
Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
Mouthparts are the feeding organs of insects, which play vital roles in the feeding process. The morphology of insect mouthparts has greatly evolved according to different foods and feeding habits. Therefore, studying the structure of the mouthparts is the key to understanding their feeding mechanisms.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
September 2024
Department of Biology, Indiana University - Indianapolis, Indianapolis, Indiana, USA.
Auditory hair cells, which convert sound-induced vibrations in the inner ear into neural signals, depend on multiple actin populations for normal function. Stereocilia are mechanosensory protrusions formed around a core of linear, crosslinked F-actin. They are anchored in the cuticular plate, which predominantly consists of randomly oriented actin filaments.
View Article and Find Full Text PDFFEBS Lett
September 2024
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
In inner ear hair cells, the stereocilia are inserted into a dense F-actin-enriched meshwork named the cuticular plate, which provides support to the stereocilia. Enah/Vasp-like (EVL) was shown to localize at the cuticular plate, and evl knockdown leads to disrupted cuticular plate and disorganized stereocilia in Xenopus hair cells. In the present work, we show that Evl transcripts are specifically expressed in mouse hair cells, and EVL is localized to the cuticular plate.
View Article and Find Full Text PDFJ Genet Genomics
November 2024
MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Jiangsu Key Laboratory of Molecular Medicine and National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, Jiangsu 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, Jiangsu 210061, China. Electronic address:
Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!