We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion exchange with M(NO3)2 (where M = Co2+ or Ni2+), supercritical drying with liquid CO2, and carbonization at temperatures between 400 and 1050 degrees C under a N2 atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 and 450 degrees C, respectively, forming nanoparticles that are approximately 4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 degrees C mainly consist of interconnected carbon particles with a size of 15-30 nm. When the samples are pyrolyzed at 1050 degrees C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni- and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is approximately 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro- and mesoporic region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la047344d | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
Carbon dot-based nanozymes have gained significant attention, but their application in dye degradation remains limited due to low activity and challenges in recovery and reuse. To overcome these limitations, high peroxidase-active Co-doped carbon dots (CoCDs) with surface amines were synthesized via hydrothermal method and immobilized onto TEMPO-oxidized cellulose nanofibrils (TOCNF) aerogels using EDC/NHS coupling. For the first time, this study investigates the dye degradation efficiency of CDs nanozyme.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.
Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga City, Saga 840-8502, Japan.
This study introduces a novel method for fabricating multicavity, honeycomb-shaped collagen aerogels characterized by continuous pores. We have taken a unique approach to lyophilizing collagen hydrogels, which are UV-irradiated collagen solutions gelatinized in a carbonate buffer solution. The focus of this study was to investigate the effect of UV irradiation times on collagen solutions on collagen hydrogels and aerogels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Pharmaceuticals are the new emerging challenge pollutants to removal from the aquatic environments. In this study, a series of reduced graphene oxide/carbon/calcium alginate (rGO/C/CA) aerogel was fabricated using an environmentally friendly freeze-drying method. The surface properties including surface textures, elemental contents, crystal structures, and functional groups of rGO/C/CA aerogel were investigated.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!