The present study underlines the importance of phospholipase A2 (PLA2)- and lipoxygenase (LO)-mediated signaling processes in the regulation of inducible nitric oxide synthase (iNOS) gene expression. In glial cells, lipopolysaccharide (LPS) induced the activities of PLA2 (calcium-independent PLA2; iPLA2 and cytosolic PLA2; cPLA2) as well as gene expression of iNOS. The inhibition of cPLA2 by methyl arachidonyl fluorophosphates (MAFP) or antisense oligomer against cPLA2 and inhibition of iPLA2 by bromoenol lactone reduced the LPS-induced iNOS gene expression and NFkappaB activation. In addition, the inhibition of LO by nordihydroguaiaretic acid (NDGA; general LO inhibitor) or MK886 (5-LO inhibitor), but not baicalein (12-LO inhibitor), completely abrogated the LPS-induced iNOS expression. Because NDGA could abrogate the LPS-induced activation of NFkappaB, while MK886 had no effect on it, LO-mediated inhibition of iNOS gene induction by LPS may involve an NFkappaB-dependent or -independent (by 5-LO) pathway. In contrast to LO, however, the cyclooxygenase (COX) may not be involved in the regulation of LPS-mediated induction of iNOS gene because COX inhibition by indomethacin (general COX inhibitor), SC560 (COX-1 inhibitor), and NS398 (COX-2 inhibitor) affected neither the LPS-induced iNOS expression nor activation of NFkappaB. These results indicate a role for cPLA2 and iPLA2 in LPS-mediated iNOS gene induction in glial cells and the involvement of LO in these reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.20178 | DOI Listing |
Parasite
January 2025
National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China.
The aim of this study was to clarify the taxonomic identification of a hemoflagellate and assess the effect of trypanosome infection on Larimichthys crocea. Giemsa staining showed the presence of three morphotypes of trypomastigotes. The trypanosomes had the following morphological characteristics: a slender body with a long flagellum at the front; body size 12.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.
Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China. Electronic address:
Ethnopharmacological Relevancy: Danggui Niantong Decoction (DGNTD) is a traditional Chinese medicine compound formula that has been demonstrated to possess efficacy in the treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), as well as for dispelling moisture and relieving pain. As mentioned before, DGNTD is essential for synovial inflammation in RA. The primary features of the OA synovial membrane are low-grade inflammation, hyperplasia with enhanced fibroblast-like synoviocytes (FLS) proliferation, and fibrosis, which can cause pain and stiffness.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.
Fucoidan from Apostichopus japonicus (Aj-FUC) has shown anti-inflammatory activity, whereas its mechanism was not explicated. This study investigated the anti-inflammatory potential and mechanism of the fucoidan from green and purple A. japonicus (G-FUC and P-FUC) in lipopolysaccharide (LPS)-treated RAW264.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China; Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199 China. Electronic address:
Acute pulmonary inflammation is a severe lower respiratory tract infection. Sinensetin (SIN), a polymethoxyflavone with strong anti-inflammatory properties, is known to ameliorate LPS-induced acute inflammatory lung injury, but its molecular mechanisms are not fully understood. This study aimed to provide insight into the pharmacological mechanisms of SIN in attenuating acute pulmonary inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!