Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aims of the present study were as follows: (1) to examine the adaptational changes to chronic endurance voluntary exercise and (2) to investigate the effects of amino acid supplementation on the adaptational changes induced by endurance training in hindlimb (gastrocnemius, tibialis, soleus) and respiratory (diaphragm) muscles of mice. Male C57Bl6 mice were divided in four groups: control sedentary, sedentary supplemented with amino acid mixture (BigOne, 1.5 mg g day(-1) in drinking water for 8 weeks), running (free access to running wheels for 8 weeks), and running supplemented with amino acid mixture. Myosin heavy chain (MHC) isoform distribution was determined in all muscles considered. Fiber cross-sectional area (CSA) was measured in the soleus muscle. In all muscles except the tibialis, endurance training was associated with an overall shift towards the expression of slower MHC isoforms. Amino acid supplementation produced a shift towards the expression of faster MHC isoforms in the soleus and diaphragm muscles, and partially antagonized the effects of training. Immunohistochemical analysis of CSA of individual muscle fibers from the soleus muscle suggests that voluntary running produced a decrease in the size of type 1 fibers, and amino acid supplementation during training resulted in an increase in size in both type 1 and type 2A fibers. Collectively, these results suggest that the endurance adaptations induced by voluntary running depend on the muscle type, and that amino acid supplementation is able to modulate both fiber size and MHC isoform composition of skeletal muscles in sedentary and exercised mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-004-1237-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!