AI Article Synopsis

  • The study highlights the adaptability of Ag-specific CD4(+) Th2 cells in the central nervous system (CNS) during an autoimmune response, showing that their function is influenced by local cytokines.
  • Targeted gene therapy that increases IL-18 binding protein in these T cells can enhance their ability to produce IL-4, promoting tolerance and potentially offering a new therapeutic strategy against autoimmune conditions.
  • Results indicate that simply transferring Th2 cells isn't enough; instead, modifying their environment can restore their protective functions, providing insight into better treatment approaches for autoimmune diseases.

Article Abstract

The current study shows that functional polarization of Ag-specific CD4(+) Th2 cells entering the CNS during the accelerating phase of experimental autoimmune encephalomyelitis is flexible and dependent on the cytokine milieu there. Thus, targeted cell/gene therapy by Ag-specific T cells overexpressing IL-18 binding protein overrides this flexibility and induces infectious spread of T cell tolerance. Using a congenic system, we demonstrated that at this time, Ag-specific Th2 cells accumulate at the CNS but then arrest of IL-4 production. A manipulation of targeted cell/gene delivery was then used to detect whether this function is dependent on the cytokine milieu there. Targeted overexpression of IL-18 binding protein, a natural inhibitor of IL-18, restored the ability of these Ag-specific Th2 cells to produce IL-4 and subsequently induce protective spread of Th2 polarization. These findings not only suggest a novel way of therapy, but also explain why shifting the balance of Ag-specific T cells toward Th2 suppresses ongoing experimental autoimmune encephalomyelitis, whereas a direct transfer of these cells is ineffective.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.174.7.4307DOI Listing

Publication Analysis

Top Keywords

th2 cells
16
il-18 binding
12
binding protein
12
targeted overexpression
8
overexpression il-18
8
overrides flexibility
8
functional polarization
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
dependent cytokine
8

Similar Publications

Th2 cells must sense and adapt to the tissue milieu in order to provide protective host immunity and tissue repair. Here, we examined the mechanisms promoting Th2 cell differentiation and function within the small intestinal lamina propria. Single cell RNA-seq analyses of CD4 T cells from the small intestinal lamina propria of helminth infected mice revealed high expression of the gene , encoding the transcription factor hypoxia-inducible factor 2a (HIF2α).

View Article and Find Full Text PDF

This study aimed to explore the mechanisms underlying T-cell differentiation in asthma. Flow cytometry was performed to detect Th cells. LC-MS/MS was performed to assess lipid metabolism.

View Article and Find Full Text PDF

Objective: The prognosis for severe asthma is poor, and the current treatment options are limited. The methyl-CpG binding domain protein 2 (MBD2) participates in neutrophil-mediated severe asthma through epigenetic regulation. Neutrophil extracellular traps (NETs) play a critical role in the pathogenesis of severe asthma.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) pose a significant threat to human health worldwide, characterized by intricate pathogenesis. A PC-esterase domain containing 1A (PCED1A) is a critical number of the GDSL/SGNH superfamily.

Aim: The aim of this study is to explore the diagnostic value of PCED1A in HCC and CRC and its relationship with immune infiltration.

View Article and Find Full Text PDF

Chronic inflammation in the tumour microenvironment (TME) via Th2-polarisation promotes melanoma progression and metastasis, making it a target for immunotherapy. Interleukin (IL)-4 is considered essential for Th2-polarisation in the TME; however, its source remains unknown. Basophils have been postulated as one of its sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!