Peroxisome proliferator-activated receptor gamma (PPARgamma) is a transcription factor important in fat metabolism and is emerging as an important regulator of immunity and inflammation. We previously demonstrated that normal and malignant B lineage cells express PPARgamma and die by apoptosis after PPARgamma agonist exposure. In this study, we used the WEHI-231 mouse B lymphoma and normal mouse spleen B lymphocytes to elucidate the mechanism of PPARgamma agonist-induced apoptosis, and to determine whether an apoptosis rescue mechanism exists. In WEHI-231 cells, the natural PPARgamma agonist 15-deoxy-Delta(12,14)-PGJ(2) and the synthetic PPARgamma agonist ciglitazone induced activation of caspase 3 and caspase 9, a decrease in mitochondrial membrane potential, and caused cleavage of the caspase substrate poly(ADP-ribose) polymerase. We next tested whether CD40, whose engagement delivers a potent prosurvival signal for B cells, could protect B cells from PPARgamma agonist-induced apoptosis. CD40 engagement with CD40L significantly blunted the ability of PPARgamma agonists to induce apoptosis of B lymphocytes and prevented the inhibition of NF-kappaB mobilization by 15-deoxy-Delta(12,14)-PGJ(2) and ciglitazone. Interestingly, PPARgamma agonists induced an increase in IkappaBalpha and IkappaBbeta protein levels, which was prevented with CD40 engagement. The rescue mechanism induced by CD40 engagement was dependent on NF-kappaB, as an NF-kappaB inhibitor prevented rescue. Apoptosis induction by PPARgamma ligands may be important for immune regulation by killing B lymphocytes as a rapid means to dampen inflammation. Moreover, the ability of PPARgamma agonists to kill malignant B lineage cells has implications for their use as anti-B lymphoma agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.174.7.4060 | DOI Listing |
Nature
January 2025
Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee, USA.
Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.
View Article and Find Full Text PDFNat Rev Rheumatol
December 2024
AMPEL BioSolutions, Charlottesville, VA, USA.
PLoS Med
October 2024
Harvard Medical School, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
Background: The interaction of CD40L and its receptor CD40 on activated T cells and B cells respectively control pro-inflammatory activation in the pathophysiology of autoimmunity and transplant rejection. Previous studies have implicated signaling pathways involving CD40L (interchangeably referred to as CD154), as well as adaptive and innate immune cell activation, in the induction of neuroinflammation in neurodegenerative diseases. This study aimed to assess the safety, tolerability, and impact on pro-inflammatory biomarker profiles of an anti CD40L antibody, tegoprubart, in individuals with amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFJ Immunother Cancer
October 2024
Department of Medicine, UCLA Medical Center, Los Angeles, California, USA.
Background: Tumor-selective oncolytic viral vectors are promising anticancer therapeutics; however, challenges with dosing and potency in advanced/metastatic cancers have limited efficacy and usage. NG-350A is a next-generation blood-stable adenoviral vector engineered to express an agonist anti-cluster of differentiation (CD)40 antibody without affecting tumor-selectivity and oncolytic potency.
Methods: Intravenous and intratumoral (IT) administration of NG-350A was assessed in a phase Ia/Ib study in patients with metastatic/advanced epithelial tumors (NCT03852511).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!