In the course of inflammatory responses in peripheral tissues, NK cells may be exposed to cytokines such as IL-12 and IL-4 released by other cell types that may influence their functional activities. In the present study we comparatively analyzed purified human peripheral blood NK cells that had been exposed to either IL-12 or IL-4 during short (overnight) incubation. We show that although IL-12-cultured NK cells produced abundant IFN-gamma, TNF-alpha, and GM-CSF in response to stimuli acting on the NKp46-activating receptor, IL-4-cultured NK cells did not release detectable levels of these cytokines. In contrast, IL-4-cultured NK cells produced significant levels of TNF-alpha and GM-CSF only when stimulated with PMA and ionomycin. In no instance could the production of IL-5 and IL-13 be detected. Importantly, IL-12-cultured, but not IL-4-cultured, NK cells displayed strong cytolytic activity against various tumor cells or immature dendritic cells (DCs). Moreover, only NK cells that had been cultured in IL-12 were able to induce substantial DC maturation. Our data suggest that NK cells exposed to IL-12 for a time interval compatible with in vivo responses may favor the selection of appropriate mature DCs for subsequent Th1 cell priming in secondary lymphoid organs. On the contrary, NK cells exposed to IL-4 do not exert DC selection, may impair efficient Th1 priming, and favor either tolerogenic or Th2-type responses.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.174.7.3992DOI Listing

Publication Analysis

Top Keywords

cells exposed
16
cells
13
il-12 il-4
12
il-4-cultured cells
12
dendritic cells
8
exposed il-12
8
cells produced
8
tnf-alpha gm-csf
8
il-12
5
il-4 prime
4

Similar Publications

Endoplasmic reticulum (ER) stress is crucially involved in inflammatory bowel disease (IBD), but the mechanisms remain incompletely understood. This study aimed to elucidate how ER stress promotes inflammation in IBD. ER stress marker Grp78 and NOD2 in colon tissues of Crohn's disease (CD) patients and IBD model mice were detected by immunohistochemical analysis.

View Article and Find Full Text PDF

Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.

View Article and Find Full Text PDF

Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.

View Article and Find Full Text PDF

Microenvironment-induced programmable nanotherapeutics restore mitochondrial dysfunction for the amelioration of non-alcoholic fatty liver disease.

Acta Biomater

January 2025

Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a metabolic liver disorder with severe complications. Mitochondrial dysfunction due to over-opening of the mitochondrial permeability transition pore (mPTP) in liver cells plays a central role in the development and progression of NAFLD. Restoring mitochondrial function is a promising strategy for NAFLD therapy.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!