Protein phosphatase 2A (PP2A) is widely distributed in heart tissues, yet its precise cellular functions are poorly understood. This study is based on the notion that PP2A action is governed by interactions of the core enzyme with B targeting/regulatory subunits. The subcellular localizations of two B subunits, B56alpha and B56gamma1, were assessed using adenovirus-driven expression of epitope-tagged (hemagglutinin, HA) in cultured neonatal and adult rat ventricular myocytes. Confocal imaging revealed that HA-B56alpha was excluded from the nucleus and decorated striated structures, whereas HA-B56gamma1 was principally found in the nucleus. Precise immunolabeling studies showed that B56gamma1 was concentrated in intranuclear structures known as nuclear speckles, macromolecular structures that accumulate transcription and splicing factors. Western blot analyses revealed that overexpression of either B subunit had no effect on the levels of other PP2A subunits in cultured neonatal cardiac cells. However, overexpression of only B56gamma1 increased whole cell PP2A activity by 40% when measured in cell extracts. Finally, B56gamma1 did not alter global gene expression or expression of hypertrophic gene markers such as alpha-skeletal actin. However, morphometric analyses of confocal images revealed that B56gamma1 alters the dynamic assembly/disassembly process of nuclear speckles in heart cells. These studies provide new insight into mechanisms of PP2A targeting in the subnuclear architecture in cardiomyocytes and into the role of this phosphatase in nuclear signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01291.2004 | DOI Listing |
Cell Mol Life Sci
January 2025
School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
C1orf115 has been identified in high-throughput screens as a regulator of multidrug resistance possibly mediated through an interaction with ATP-dependent membrane transporter ABCB1. Here we show that C1orf115 not only shares structural similarities with FACI/C11orf86 to interact with clathrin adaptors to undergo endocytosis, but also induces ABCA1 transcription to promote cholesterol efflux. C1orf115 consists of an N-terminal intrinsically disordered region and a C-terminal α-helix.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America.
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
Biomolecular condensation lays the foundation of forming biologically important membraneless organelles, but abnormal condensation processes are often associated with human diseases. Ribonucleic acid (RNA) plays a critical role in the formation of biomolecular condensates by mediating the phase transition through its interactions with proteins and other RNAs. However, the physicochemical principles governing RNA phase transitions, especially for short RNAs, remain inadequately understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!