V(H)Hs from naive libraries have dissociation constants (K(D)s) in the low micromolar range and thus, for most antibody applications, their intrinsic affinities need to be improved significantly. Non-targeted in vitro affinity maturation approaches based on indiscriminate randomization of complementarity-determining region (CDR) residues or random mutagenesis of conventional antibody variable domains have been shown to improve the affinity of recombinant antibodies by 450- to over 6000-fold. A different, targeted approach based on selective randomization of CDR codons containing AGY/RGYW nucleotide mutational hotspots i.e., "hotspot codons", also promises to be very efficient for improving antibody affinities. Here we employed the latter approach for improving the affinity of PTH22, a parathyroid hormone (PTH)-derived peptide-specific V(H)H that was isolated from a naive llama phage display library. A PTH22 mutant ribosome display library was constructed by randomizing nine CDR2 and CDR3 hotspot codons. The affinity improvement of the lead binder was 30-fold, which seems somewhat low in view of the large number of randomized hotspot codons. Nucleotide sequence analyses of PTH22 and 23 naive V(H)Hs suggested that many AGY/RGYW mutational hotspots are not affinity mutational hotspots but play a role in V(H)H solubility, structure, and deletion/insertion events. Our results indicate that the mutagenesis approach described here is beneficial in terms of yielding moderate increases in affinity while fine-tuning physical properties of an antibody.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jim.2004.12.005 | DOI Listing |
Molecules
December 2024
Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
Riboflavin analogs lacking one methyl group (7α or 8α) can still serve as a surrogate for riboflavin in riboflavin-deficient microorganisms or animals. The absence of both methyl groups at once completely abolishes this substitution capability. To elucidate the molecular mechanisms behind this phenomenon, we performed an adaptive laboratory evolution experiment (in triplicate) on an strain auxotrophic for riboflavin.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia.
High-grade serous ovarian carcinoma (HGSOC) remains the most common and deadly form of ovarian cancer. However, available cell lines usually fail to appropriately represent its complex molecular and histological features. To overcome this drawback, we established OVAR79, a new cell line derived from the ascitic fluid of a patient with a diagnosis of HGSOC, which adds a unique set of properties to the study of ovarian cancer.
View Article and Find Full Text PDFGenes (Basel)
November 2024
School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qari 3007500, Israel.
Background/objectives: Biallelic mutations in the gene are associated with a rare genetic disease known as infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD). In this study, we describe a new case carrying a previously identified mutation, provide an updated analysis of the relative frequencies of the clinical features across all published cases (including the three latest studies), and perform a bioinformatics analysis of the newly identified PTRH2 protein variants from a structural perspective.
Methods: Clinical examination of the patients was carried out, and genetic testing was performed using a genome sequencing strategy.
The Rac1 P29S hotspot mutation in cutaneous melanoma is associated with resistance to MAPK pathway inhibitors (MAPKi) and worse clinical outcomes. Moreover, activation of Rac1 guanine exchange factors (GEFs) also promotes MAPKi-resistance, particularly in undifferentiated melanoma cells. Here we delineate mechanisms of Rac1-driven MAPKi-resistance and identify strategies to inhibit the growth of this class of cutaneous melanomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!