In falciparum malaria, both infected and uninfected red cells have structural and functional alterations. To investigate the mechanisms of these modifications, we studied the effects of two Plasmodium falciparum haem products (haematin and malaria pigment in the synthetic form beta-haematin) on isolated human red blood cells (RBCs) and purified RBC ghosts. A dose- and time-dependent incorporation of haematin into RBC ghosts and intact cells was observed, which was in proportion to the extent of haematin- induced haemolysis. RBCs pre-incubated with haematin were more sensitive to haemolysis induced by hypotonic shock, low pH, H2O2 or haematin itself. Haemolysis was not related to membrane lipid peroxidation and only partially to oxidation of protein sulphydryl groups and it could not be prevented by scavengers of lipid peroxidation or hydroperoxide groups. N-acetylcysteine partly protected the oxidation of SH groups and significantly reduced haemolysis. In contrast, beta-haematin was neither haemolytic nor oxidative towards protein sulphydryl groups. Beta-haematin did destabilise the RBC membrane, but to a lesser extent than haematin, inducing increased susceptibility to lysis caused by hypotonic medium, H2O2 or haematin. This study suggests that the destabilising effect of haematin and, to a much less extent, beta-haematin on the RBC membrane does not result from oxidative damage of membrane lipids but from direct binding or incorporation which may affect the reciprocal interactions between the membrane and cytoskeleton proteins. These changes could contribute to the reduced red cell deformability associated with severe malaria.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0609.2004.00352.xDOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
falciparum haem
8
haem products
8
rbc ghosts
8
h2o2 haematin
8
lipid peroxidation
8
protein sulphydryl
8
sulphydryl groups
8
rbc membrane
8
haematin
7

Similar Publications

A chemical examination of a root extract of led to the isolation and identification of 23 compounds, including oxazole-type alkaloids and isoflavonoid derivatives. Notably, three oxazole-type alkaloids (, , and ) and two isoflavonoid derivatives ( and ) were obtained from a natural source for the first time. In addition, derived 2,5-diphenyloxazoles and their derivatives were synthesized.

View Article and Find Full Text PDF

Roll out and prospects of the malaria vaccine R21/Matrix-M.

PLoS Med

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

In this Perspective article, Lorenz von Seidlein outlines the promise of two malaria vaccines, and discusses some of the considerations for their roll out.

View Article and Find Full Text PDF

Background: To understand the emergence and spread of drug-resistant parasites in malaria-endemic areas, accurate assessment and monitoring of antimalarial drug resistance markers is critical. Recent advances in next-generation sequencing (NGS) technologies have enabled the tracking of drug-resistant malaria parasites.

Methods: In this study, we used Targeted Amplicon Deep Sequencing (TADS) to characterise the genetic diversity of the Pfk13, Pfdhfr, Pfdhps, and Pfmdr1 genes among primary school-going children in 15 counties in Kenya (Bungoma, Busia, Homa Bay, Migori, Kakamega, Kilifi, Kirinyaga, Kisii, Kisumu, Kwale, Siaya, Tana River, Turkana, Vihiga and West Pokot).

View Article and Find Full Text PDF

Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.

View Article and Find Full Text PDF

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!