The purpose of this study was to investigate the physicomechanical and dissolution properties of tablets containing controlled-release pellets prepared by a hot-melt extrusion and spheronization process. A powder blend of anhydrous theophylline, Eudragit Preparation 4135 F, and functional excipients was melt-extruded, pelletized, and then spheronized. The pellets were compressed into tablets using forces of 5, 10, 15, and 20 kN. Tablet diluents included microcrystalline cellulose, a mixture of spray-dried lactose and microcrystalline cellulose, modified food starch, and soy polysaccharides. The effective porosity of the compressed pellets was measured using mercury porosimetry and helium pycnometry, while the surface area was determined using Brunauer, Emmett, and Teller (BET) analysis. The disintegration time, hardness, and friability of compacts were determined. Drug release studies were performed according to USP 27 Apparatus 3 guidelines in 250 mL of medium (pH 1.0, 3.0, 5.0, 6.8, and 7.4) 37 degrees C and 20 dpm. Samples were analyzed by high pressure-liquid chromatography (HPLC). Effective porosity and surface area determinations of the melt-extruded pellets were not influenced by compression. The percent of theophylline released from rapidly disintegrating tablets was not affected by compression force or excipient selection, but tablets with prolonged disintegration times exhibited delayed drug release in acidic media. However, dissolution profiles of uncompressed pellets and all compacts were identical after transition from 0.1 N HCl to media increasing in pH from 3.0 to 7.4. Furthermore, pellet to filler excipient ratio and filler excipient selection did not influence the rate of drug release from compacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1081/pdt-49695 | DOI Listing |
Methods Cell Biol
January 2025
T Cell Lymphoma Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain. Electronic address:
T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:
A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.
View Article and Find Full Text PDFJ Control Release
January 2025
Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan. Electronic address:
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!