Comparative quantification of nucleic acids using single-molecule detection and molecular beacons.

Analyst

Mechanical Engineering Department & Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD 21218, USA.

Published: April 2005

This paper reports a highly sensitive homogenous method for comparative quantification of nucleic acids based on single-molecule detection (SMD) and molecular beacons (MBs). Two different color MBs were used to perform a separation-free comparative hybridization assay for simultaneous quantification of both target and control strands. A fluorescent burst, emitted from a single hybrid when it passes through a minuscule laser-focused region, is detected with high signal-to-noise ratio (SNR) by using single-molecule fluorescence spectroscopy. Targets are quantified via counting of discrete fluorescent bursts. The high SNR achieved in both detection channels overcame the complications of fluorescent variability usually observed in dual-color ensemble measurements. In comparison with the conventional ensemble methods, this method improved the detection limit by 3 orders of magnitude and reduced the probe consumption by 6 orders of magnitude, facilitating a highly sensitive approach for comparative quantification of nucleic acids and offering great promise for genomic quantification without amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b415758cDOI Listing

Publication Analysis

Top Keywords

comparative quantification
12
quantification nucleic
12
nucleic acids
12
single-molecule detection
8
molecular beacons
8
highly sensitive
8
orders magnitude
8
comparative
4
acids single-molecule
4
detection
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.

Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.

View Article and Find Full Text PDF

Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

4D flow cardiac magnetic resonance in pediatric congenital heart disease: Insights from over four years of clinical practice.

Clin Imaging

January 2025

Institute of Clinical sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Dept of Pediatric Radiology, The Queen Silvia Children's Hospital, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Background: Congenital heart diseases (CHDs) are common birth defects. This work presents over four years of clinical experience of 4D flow cardiovascular magnetic resonance (CMR), highlighting its value for pediatric CHD.

Methods: Children with various CHD diagnoses (n = 298) were examined on a 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!