Background: Fibroblasts are involved in the remodeling of the heart and of the vasculature associated to arterial hypertension, and an abnormal extracellular signal-regulated kinase 1/2 (ERK1/2) activation by angiotensin II (Ang II) plays a pivotal role in this process. However, the intracellular pathways leading to cell hypertrophy and hyperplasia, as well as to collagen production, are still incompletely known.

Objective: To investigate the role of superoxide anion (O2) and of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase in Ang II-stimulated ERK1/2 over-activation in fibroblasts from hypertensive patients.

Methods: O2 production was measured in skin fibroblasts from hypertensives (HT, n = 11) and from normotensive controls (NT, n = 10) by electron spin resonance technique. ERK1/2 phosphorylation and p47phox NAD(P)H oxidase subunit translocation were measured by western blot.

Results: Ang II (1 micromol/l) induced a larger p47phox subunit translocation and increased intracellular O2 production to a larger extent in HT in comparison to NT and this effect was blocked by apocynin, an inhibitor of the NAD(P)H oxidase. Ang II increased ERK1/2 phosphorylation more in HT than in NT. The Ang II-induced ERK1/2 phosphorylation was inhibited by apocynin in a dose-dependent manner in NT, but not in HT.

Conclusions: The chain of cellular events leading to increased ERK1/2 responsiveness to Ang II in hypertension include an exaggerated response of p47phox, NAD(P)H oxidase and O2, but it is partially resistant to apocynin. Therefore, NAD(P)H-dependent reactive oxygen species (ROS) production is not the only determinant of the exaggerated ERK1/2 responsiveness in fibroblasts of hypertensives (HT).

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.hjh.0000163148.97459.9dDOI Listing

Publication Analysis

Top Keywords

nadph oxidase
16
fibroblasts hypertensives
12
erk1/2 responsiveness
12
erk1/2 phosphorylation
12
erk1/2
8
oxidase ang
8
p47phox nadph
8
subunit translocation
8
increased erk1/2
8
ang
6

Similar Publications

Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.

View Article and Find Full Text PDF

Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, (), through phytochemical characterization using liquid chromatography-mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified.

View Article and Find Full Text PDF

Enhancing Ferroptosis-Mediated Radiosensitization Synergistic Disulfidptosis Induction.

ACS Nano

December 2024

Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P.R. China.

Ferroptosis plays an important role in radiotherapy (RT), and the induction of ferroptosis can effectively sensitize radiotherapy. However, the therapeutic efficiency is always affected by ferroptosis resistance, especially SLC7A11 (Solute Carrier Family 7 Member 11)-cystine-cysteine-GSH (glutathione)-GPX4 (glutathione peroxidase 4) pathway-mediated resistance. In this study, tumor-microenvironment self-activated high-Z element-containing nanoferroptosis inducers, PEGylated Fe-Bi-SS metal-organic frameworks (FBSP MOFs), were developed to sensitize RT.

View Article and Find Full Text PDF

Purpose: This study aims to investigate the role of Cytochrome b-245 chaperone 1 (CYBC1) in glioblastoma (GBM) progression, focusing on its involvement in reactive oxygen species (ROS) production and associated signaling pathways. Understanding the molecular mechanisms driven by CYBC1 could provide new therapeutic targets and prognostic markers for GBM.

Materials And Methods: Publicly available datasets were analyzed to assess CYBC1 expression in GBM and its correlation with patient survival.

View Article and Find Full Text PDF

The protein tyrosine phosphatase Lyp/PTPN22 drives TNFα-induced priming of superoxide anions production by neutrophils and arthritis.

Free Radic Biol Med

December 2024

INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France. Electronic address:

Neutrophils are essential for host defense against infections, but they also play a key role in acute and chronic inflammation. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes the lymphoid-specific tyrosine phosphatase (Lyp) and a genetic single-nucleotide polymorphism of PTPN22 rs2476601 (R620W) has been associated with several human autoimmune diseases, including rheumatoid arthritis (RA). Here, we investigated the role of Lyp in TNFα-induced priming of neutrophil ROS production and in the development of arthritis using new selective Lyp inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!