Clinical review: Vasopressin and terlipressin in septic shock patients.

Crit Care

Department of Anesthesiology and Intensive Care Medicine, and Trauma Center, Marseilles University Hospital System, Marseilles School of Medicine, Marseilles, France.

Published: April 2005

Vasopressin (antidiuretic hormone) is emerging as a potentially major advance in the treatment of septic shock. Terlipressin (tricyl-lysine-vasopressin) is the synthetic, long-acting analogue of vasopressin, and has comparable pharmacodynamic but different pharmacokinetic properties. Vasopressin mediates vasoconstriction via V1 receptor activation on vascular smooth muscle. Septic shock first causes a transient early increase in blood vasopressin concentrations; these concentrations subsequently decrease to very low levels as compared with those observed with other causes of hypotension. Infusions of 0.01-0.04 U/min vasopressin in septic shock patients increase plasma vasopressin concentrations. This increase is associated with reduced need for other vasopressors. Vasopressin has been shown to result in greater blood flow diversion from nonvital to vital organ beds compared with adrenaline (epinephrine). Of concern is a constant decrease in cardiac output and oxygen delivery, the consequences of which in terms of development of multiple organ failure are not yet known. Terlipressin (one or two boluses of 1 mg) has similar effects, but this drug has been used in far fewer patients. Large randomized clinical trials should be conducted to establish the utility of these drugs as therapeutic agents in patients with septic shock.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1175907PMC
http://dx.doi.org/10.1186/cc2945DOI Listing

Publication Analysis

Top Keywords

septic shock
20
vasopressin
8
shock patients
8
vasopressin concentrations
8
septic
5
shock
5
clinical review
4
review vasopressin
4
vasopressin terlipressin
4
terlipressin septic
4

Similar Publications

Background: Although surviving sepsis campaign (SSC) guidelines are the standard for sepsis and septic shock management, outcomes are still unfavourable. Given that perfusion pressure in sepsis is heterogeneous among patients and within the same patient; we evaluated the impact of individualized hemodynamic management via the transcranial Doppler (TCD) pulsatility index (PI) on mortality and outcomes among sepsis-induced encephalopathy (SIE) patients.

Methods: In this prospective, single-center randomized controlled study, 112 patients with SIE were randomly assigned.

View Article and Find Full Text PDF

Sepsis is a major cause of morbidity and mortality worldwide. Among the various types of end-organ damage associated with sepsis, hepatic injury is linked to significantly higher mortality rates compared to dysfunction in other organ systems. This study aimed to investigate potential biomarkers of hepatic injury in sepsis patients through a multi-center, case-control approach.

View Article and Find Full Text PDF

Objectives: To assess characteristics and outcomes of children with suspected or confirmed infection requiring emergency transport and PICU admission and to explore the association between the 2024 Phoenix Sepsis Score (PSS) criteria and mortality.

Design: Retrospective analysis of curated data from a 2014-2016 multicenter cohort study.

Setting: PICU admission following emergency transport in South East England, United Kingdom, from April 2014 to December 2016.

View Article and Find Full Text PDF

Sepsis often leads to vasoplegia and a hyperdynamic cardiac state, with treatment focused on restoring vascular tone. However, sepsis can also cause reversible myocardial dysfunction, particularly in the elderly with pre-existing heart conditions. The Surviving Sepsis Campaign Guidelines recommend using dobutamine with norepinephrine or epinephrine alone for patients with septic shock with cardiac dysfunction and persistent hypoperfusion despite adequate fluid resuscitation and stable blood pressure.

View Article and Find Full Text PDF

Sepsis, characterized as a systemic inflammatory response triggered by pathogen invasion, represents a continuum that may progress from mild systemic infection to severe sepsis, potentially culminating in septic shock and multiple organ dysfunction syndrome. A pivotal element in the pathogenesis and progression of sepsis involves the significant disruption of oncological metabolic networks, where cells within the pathological milieu exhibit metabolic functions that diverge from their healthy counterparts. Among these, purine metabolism plays a crucial role in nucleic acid synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!