Selenium (Se) is an essential micronutrient for animals and humans, and wheat is a major dietary source of this element. It is important that postharvest processing losses of grain Se are minimized. This study, using grain dissection, milling with a Quadrumat mill, and baking and toasting studies, investigated the distribution of Se and other mineral nutrients in wheat grain and the effect of postharvest processing on their retention. The dissection study, although showing Se concentration to be highest in the embryo, confirmed (along with the milling study) previous findings that Se (which occurs mostly as selenomethionine in wheat grain) and S are more evenly distributed throughout the grain when compared to other mineral nutrients, and, hence, lower proportions are removed in the milling residue. Postmilling processing did not affect Se concentration or content of wheat products in this study. No genotypic variability was observed for grain distribution of Se in the dissection and milling studies, in contrast to Cu, Fe, Mn, and Zn. This variability could be exploited in breeding for higher proportions of these nutrients in the endosperm to make white flour more nutritious. Further research could include grain dissection and milling studies using larger numbers of cultivars that have been grown together and a flour extraction rate of around 70%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/BTER:103:2:155 | DOI Listing |
Sci Data
January 2025
Section of Intensive Plant Food Systems, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt Universität zu Berlin, Berlin, Germany.
Multi-environmental trials (MET) with temporal and spatial variance are crucial for understanding genotype-environment-management (GxExM) interactions in crops. Here, we present a MET dataset for winter wheat in Germany. The dataset encompasses MET spanning six years (2015-2020), six locations and nine crop management scenarios (consisting of combinations for three treatments, unbalanced in each location and year) comparing 228 cultivars released between 1963 and 2016, amounting to a total of 526,751 data points covering 24 traits.
View Article and Find Full Text PDFProtoplasma
January 2025
Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.
Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology Freising Germany.
Starch and non-starch polysaccharides ((N)SPs) are relevant in cereal-based beverages. Although their molar mass and conformation are important to the sensory characteristics of beer and non-alcoholic beer, their triggering mechanism in the mouth is not fully understood. Soft tribology has emerged as a tool to mimic oral processing (drinking).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan. Electronic address:
Molybdenum (Mo) is an essential micronutrient for plants, yet it also poses potential environmental risks when present in excess. This study investigated the Mo speciation in soils with varying properties and their influences on Mo uptake by wheat (Triticum aestivum L.), a staple crop with significant implications for global food security.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China. Electronic address:
A comprehensive understanding of cadmium (Cd) migration in soils near contaminated hotspots is crucial for optimizing remediation efforts and ensuring crop health. This study investigates agricultural soils from four sites in mining and sewage-irrigation areas, assessing the impact of inorganic and organic fertilizer application on soil Cd remobilization. Results revealed that fertilization, particularly with mineral phosphorus, disrupts soil stability, substantially increases short-term Cd mobility in vulnerable regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!