Targeted disruption of effectors molecules of the apoptotic pathway have demonstrated the occurrence and magnitude of early programmed cell death (EPCD), a form of apoptosis that affects proliferating and newly differentiated cells in vertebrates, and most dramatically cells of the central nervous system (CNS). Little is known about the molecular pathways controlling apoptosis at these early developmental stages, as the roles of EPCD during patterning of the developing nervous system. We describe a new function, in Xenopus neurodevelopment, for a highly conserved homeodomain protein Barhl2. Barhl2 promotes apoptosis in the Xenopus neuroectoderm and mesoderm, acting as a transcriptional repressor, through a mechanism that cannot be attributed to an unspecific cellular stress response. We show that the pro-apoptotic activity of Barhl2 is essential during normal neural plate formation as it limits the number of chordin- and Xshh-expressing cells in the prospective notochord and floorplate, which act as organizing centers. Our findings show that Barhl2 is part of a pathway regulating EPCD. They also provide evidence that apoptosis plays an important role in regulating the size of organizing centers.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.01712DOI Listing

Publication Analysis

Top Keywords

pro-apoptotic activity
8
neural plate
8
number chordin-
8
nervous system
8
organizing centers
8
activity vertebrate
4
vertebrate bar-like
4
bar-like homeobox
4
homeobox gene
4
gene plays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!