A high throughput method for the detection of metalloproteins on a microgram scale.

Mol Cell Proteomics

Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-75124 Uppsala, Sweden.

Published: June 2005

Proteins that bind transition metals make up a substantial portion of the proteome, and the identification of a metal cofactor in a protein can greatly facilitate its functional assignment and help place it in the context of known cellular pathways. Existing methods for the detection of metalloproteins generally consume large amounts of protein, require expensive equipment, or are very labor intensive, rendering them unsuitable for use in high throughput proteomic initiatives. Here we present a method for the identification of metalloproteins that contain iron, copper, manganese, cobalt, nickel, and/or zinc that is sensitive, quick, robust, inexpensive, and can be performed with standard laboratory equipment. The assay is based on a combination of chemiluminescence and colorimetric detection methods, it typically consumes only 10 microg of protein, and most common chemical components of protein solutions do not interfere with metal detection. Analysis of 52 protein samples was compared with the results from inductively coupled plasma-atomic emission spectrometry to verify the accuracy and sensitivity of the method. The assay is conducted in a 384-well format and requires about 3 h for completion, including a 2-h wait; so whole proteomes can be assayed for metal content in a matter of days.

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.T400023-MCP200DOI Listing

Publication Analysis

Top Keywords

high throughput
8
detection metalloproteins
8
protein
5
throughput method
4
detection
4
method detection
4
metalloproteins microgram
4
microgram scale
4
scale proteins
4
proteins bind
4

Similar Publications

Efficient differentiation between Pullorum and Gallinarum by a -based PCR-HRM.

Avian Pathol

January 2025

Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, People's Republic of China.

Pullorum (. Pullorum) and Gallinarum (. Gallinarum) are the biovars of serovar Gallinarum that are responsible for pullorum disease and fowl typhoid in poultry, respectively.

View Article and Find Full Text PDF

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

Effects of moderate beer consumption on immunity and the gut microbiome in immunosuppressed mice.

Biosci Microbiota Food Health

August 2024

Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.

Beer contains a variety of bioactive ingredients and trace elements that can regulate bodily functions, and moderate consumption of beer can enhance immune responses. This study aimed to investigate the potential benefits of moderate consumption of alcoholic or non-alcoholic beer on the gut microbiome, immunity, and intestinal barrier function in immunosuppressed BALB/c mice induced by cyclophosphamide (CTX). Model mice with CTX-induced immunosuppression were administered alcoholic or non-alcoholic beer or galacto-oligosaccharides (GOS) for 28 consecutive days.

View Article and Find Full Text PDF

All biological systems are subject to perturbations: due to thermal fluctuations, external environments, or mutations. Yet, while biological systems are composed of thousands of interacting components, recent high-throughput experiments show that their response to perturbations is surprisingly low-dimensional: confined to only a few stereotyped changes out of the many possible. Here, we explore a unifying dynamical systems framework - soft modes - to explain and analyze low-dimensionality in biology, from molecules to eco-systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!