AI Article Synopsis

  • The target of rapamycin (TOR) is a crucial kinase that regulates cell growth, with a complex structure where only the kinase domain is catalytically active.
  • Recent research focuses on the FATC domain at the end of TOR, revealing a unique structure that changes its flexibility when the disulfide bond is altered.
  • The study suggests that the redox state of this disulfide bond can impact the amount of TOR protein in cells by affecting its degradation, while not changing TOR mRNA levels.

Article Abstract

The target of rapamycin (TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M501116200DOI Listing

Publication Analysis

Top Keywords

fatc domain
16
target rapamycin
8
tor
8
structural data
8
redox potential
8
amount tor
8
domain
7
fatc
5
structural
5
solution structure
4

Similar Publications

Ataxia-telangiectasia mutated (ATM) drives the DNA damage response via modulation of multiple signal transduction and DNA repair pathways. Previously, ATM activity was implicated in promoting the non-homologous end joining (NHEJ) pathway to repair a subset of DNA double-stranded breaks (DSBs), but how ATM performs this function is still unclear. In this study, we identified that ATM phosphorylates the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a core NHEJ factor, at its extreme C-terminus at threonine 4102 (T4102) in response to DSBs.

View Article and Find Full Text PDF

Ataxia-telangiectasia mutated (ATM) drives the DNA damage response via modulation of multiple signal transduction and DNA repair pathways. Previously, ATM activity was implicated in promoting the non-homologous end joining (NHEJ) pathway to repair a subset of DNA double strand breaks (DSBs), but how ATM performs this function is still unclear. In this study, we identified that ATM phosphorylates the DNA-dependent protein kinase catalytic subunit (DNA-PK ), a core NHEJ factor, at its extreme C-terminus at threonine 4102 (T4102) in response to DSBs.

View Article and Find Full Text PDF

The kinase and FATC domains of VvTOR affect sugar-related gene expression and sugar accumulation in grape ().

Funct Plant Biol

October 2022

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China.

The TOR (target of rapamycin) signalling network plays a pivotal role in sugar metabolism and plant growth. In this study, we used grape (Vitis vinifera L.) calli to explore the function of the kinase and FATC domains (C-terminal of FAT (FRAP-ATM-TTRAP) of VvTOR (Vitis vinifera target of rapamycin).

View Article and Find Full Text PDF

Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays.

View Article and Find Full Text PDF

Autophagy mediated by mTOR pathway is a particularly important immune defense mechanism in the pathogens infected mammals. However, the role of TOR in echinoderm autophagy is largely unknown. Here, a cDNA encoding TOR protein was cloned and characterized from sea cucumber Apostichopus japonicus (designated as AjTOR) and its biological functions were also investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!